【RF-SSA-LSTM】随机森林-麻雀优化算法优化时间序列预测研究(Python代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

2.1 RF特征选择

2.2 LSTM预测 

2.3 SSA-LSTM预测 

2.4 MLP预测

2.5 几种算法比较 

🎉3 参考文献

🌈4 Python代码实现


💥1 概述

参考文献:

 

RF:随机森林指的是利用多棵树对样本进行训练并预测的一种分类器

RF善于处理高维数据,特征遗失数据,和不平衡数据

(1)训练可以并行化,速度快

(2)对高维数据集的处理能力强,它可以处理成千上万的输入变量,并确定最重要的变量,因此被认为是一个不错的降维方法。

(3)在训练集缺失数据时依旧能保持较好的精度(原因:RF随机选取样本和特征;RF可以继承决策树对缺失数据的处理方式)

(4)泛化能力强,因为随机

麻雀搜索算法[18]是一种群体智能优化算法。相对于 PSO[19]、蜻蜓、灰狼等智能优化算法,SSA 求解速率更快、迭代更少。按照麻雀种群的分工不同划分为发现者、加入者和侦察者。适应度高的麻雀作为发现者,为种群寻找食物丰富的区域并为加入者提供位置信息。其位置更新如式(1)所示

 

本文采用的 LSTM 神经网络是循环神经网络的一种改进[20] ,主要是为了解决梯度爆炸、梯度消失[21]等问题而专门设计的, 可以有效保持较长时间的记忆,已经在智能化领域被广泛应用,在预测回归方面也取得了一些成果[22-23]。单元结构图如图 3 所示。

 

LSTM 包含遗忘门、输入门和输出门[24] ,通过控制三个门的状态来更新细胞状态里的数据信息。其计算过程如下:  

📚2 运行结果

2.1 RF特征选择

2.2 LSTM预测 

2.3 SSA-LSTM预测 

2.4 MLP预测

2.5 几种算法比较 

plt.rcParams['xtick.direction'] = 'in'
plt.rcParams['ytick.direction'] = 'in'
plt.figure(figsize=(7, 4))
# plt.subplot(2,2,1)
# plt.plot(data0,c='r', label='real')
# plt.plot(data2,c='b',label='pred')
# plt.ylabel('MLP')
# plt.legend()
#
# plt.subplot(2,2,2)
# plt.plot(data0,c='r', label='real')
# plt.plot(data3,c='b',label='pred')
# plt.ylabel('LSTM')
# plt.legend()
#
# plt.subplot(2,2,3)
# plt.plot(data0,c='r', label='real')
# plt.plot(data4,c='b',label='pred')
# plt.legend()
# plt.xlabel('time/h')
# plt.ylabel('SSA-LSTM')
#
# # In[7] 画图
# plt.subplot(2,2,4)
# plt.plot(data0,'-',label='real')
# plt.plot(data1,'-',label='SLP')
# plt.plot(data2,'-*',label='MLP')
# plt.plot(data3,'-*',label='LSTM')
# plt.plot(data4,'-*',label='SSA-LSTM')
plt.plot(data0,label='real')
plt.plot(data1,label='SLP')
plt.plot(data2,label='MLP')
plt.plot(data3,label='LSTM')
plt.plot(data4,label='SSA-LSTM')
plt.grid()
plt.legend()
plt.xlabel('time/h')
plt.ylabel('Compare')
plt.show()

plt.rcParams['xtick.direction'] = 'in'
plt.rcParams['ytick.direction'] = 'in'
plt.figure(figsize=(7, 4))
# plt.subplot(2,2,1)
# plt.plot(data0,c='r', label='real')
# plt.plot(data2,c='b',label='pred')
# plt.ylabel('MLP')
# plt.legend()
#
# plt.subplot(2,2,2)
# plt.plot(data0,c='r', label='real')
# plt.plot(data3,c='b',label='pred')
# plt.ylabel('LSTM')
# plt.legend()
#
# plt.subplot(2,2,3)
# plt.plot(data0,c='r', label='real')
# plt.plot(data4,c='b',label='pred')
# plt.legend()
# plt.xlabel('time/h')
# plt.ylabel('SSA-LSTM')
#
# # In[7] 画图
# plt.subplot(2,2,4)
# plt.plot(data0,'-',label='real')
# plt.plot(data1,'-',label='SLP')
# plt.plot(data2,'-*',label='MLP')
# plt.plot(data3,'-*',label='LSTM')
# plt.plot(data4,'-*',label='SSA-LSTM')
plt.plot(data0,label='real')
plt.plot(data1,label='SLP')
plt.plot(data2,label='MLP')
plt.plot(data3,label='LSTM')
plt.plot(data4,label='SSA-LSTM')
plt.grid()
plt.legend()
plt.xlabel('time/h')
plt.ylabel('Compare')
plt.show()

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]彭来湖,张权,李建强等.面向喷染车间的挥发性有机物浓度预测方法及应用研究[J/OL].安全与环境学报:1-12[2023-06-12].https://doi.org/10.13637/j.issn.1009-6094.2022.2173.

🌈4 Python代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/33301.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

JavaScript内存管理和闭包

1 JavaScript内存管理 2 垃圾回收机制算法 3 闭包的概念理解 4 闭包的形成过程 5 闭包的内存泄漏 一个函数只有调用了外部的变量&#xff0c;才算是闭包。函数内和函数外会写成闭包。 深入JS闭包-闭包的访问过程 <!DOCTYPE html> <html lang"en"> &l…

海气相互作用 - 全球水循环过程及其量级

全球水循环过程及其量级 单位&#xff1a;Sv106m3/s&#xff0c;大气/陆地/海洋(103 km3)径流1.3 Sv≈台湾暖流1.1 Sv≈白令海峡0.9-1.1 Sv 从涡度平衡的角度说明为什么大洋强化发生在西边界而非东边界 有且只有在大洋西边界强化&#xff0c;才可以使得摩擦力产生一个正的涡…

pytorch搭建AlexNet网络实现花分类

pytorch搭建AlexNet网络实现花分类 一、AlexNet网络概述分析 二、数据集准备下载划分训练集和测试集 三、代码model.pytrain.pypredict.py 一、AlexNet网络 概述 使用Dropout的方式在网络正向传播过程中随机失活一部分神经元&#xff0c;以减少过拟合 分析 对其中的卷积层、…

Spring Bean的生命周期解读

目录 1. Spring IOC容器 1.1 Spring IOC 容器的设计 1.1.1 BeanFactory 1.1.2 ApplicationContext 1.2 Spring Bean的生命周期 1.2.1 BeanDefinition 1.2.2 InstantiationAwareBeanPostProcessor和BeanPostProcessor 1.2.3 测试生命周期 1. Spring IOC容器 1.1 Spring …

数据库信息速递 DataStax与谷歌合作将向NoSQL AstraDB引入向量搜索技术

开头还是介绍一下群&#xff0c;如果感兴趣polardb ,mongodb ,mysql ,postgresql ,redis 等有问题&#xff0c;有需求都可以加群群内有各大数据库行业大咖&#xff0c;CTO&#xff0c;可以解决你的问题。加群请联系 liuaustin3 &#xff0c;在新加的朋友会分到2群&#xff08;共…

2023-06-23:redis中什么是缓存击穿?该如何解决?

2023-06-23&#xff1a;redis中什么是缓存击穿&#xff1f;该如何解决&#xff1f; 答案2023-06-23&#xff1a; 缓存击穿是指一个缓存中的热点数据非常频繁地被大量并发请求访问&#xff0c;当该热点数据失效的瞬间&#xff0c;持续的大并发请求无法通过缓存获取到数据&…

数学建模-数据的处理

MATLAB数学建模方法与实践&#xff08;第3版&#xff09;——读书笔记 数据的准备数据获取数据处理缺失值处理噪音过滤数据集成数据归约数据变换标准化离散化 数据统计基本描述性统计分布描述性统计 数据可视化数据降维主成分分析&#xff08;PCA&#xff09;相关系数降维 数据…

【数据结构】排序

插入排序 把当前遍历到的元素前的元素序列是排好序的,把当前元素放到前边的序列中进行排序。 直接插入排序 不带哨兵 void InsertSort(int A[],int n) { int i,j,temp; for(i1;i<n;i) if(A[i]<A[i-1]) { tempA[i]; for(ji-1;j>0 && A[j]>temp;--j) A[j…

网络安全系统教程+学习路线(自学笔记)

一、什么是网络安全 网络安全可以基于攻击和防御视角来分类&#xff0c;我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术&#xff0c;而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 无论网络、Web、移动、桌面、云等哪个领域&#xff0c;都有攻与防两面…

34岁上岸,我终于圆了自己的考研梦

​ 大家好&#xff0c;我是独孤风&#xff0c;一位曾经的港口煤炭工人&#xff0c;目前在某国企任大数据负责人&#xff0c;公众号大数据流动的作者。 ​ 虽然告诉自己要平静&#xff0c;但是当接到EMS录取通知书的那一刻&#xff0c;眼眶还是忍不住有些湿润。今年正好是是东北…

青岛大学_王卓老师【数据结构与算法】Week03_04_线性表的链式表示和实现4_学习笔记

本文是个人笔记&#xff0c;仅用于学习分享&#xff0c;素材来自青岛大学王卓老师的教学视频&#xff0c;如有侵权&#xff0c;请留言作删文处理。 视频链接&#xff1a; 数据结构与算法基础–第3周04–2.5线性表的链式表示和实现4–单链表基本操作2–销毁单链表 &#x1f4…

Linux——进程的概念

task_struct task_struct 是linux下管理进程的结构&#xff0c;称为PCB&#xff0c;进程控制块。linux所有的指令本质上都是一个进程。进程 task_struct 进程的数据、代码、可执行程序&#xff0c;有属性、有内容。 进程是系统的工作单元。系统由多个进程组成&#xff0c;包…

ChatGPT在物流与运输行业的智能场景:智能调度和自动驾驶的前瞻应用

第一章&#xff1a;引言 随着人工智能技术的飞速发展&#xff0c;物流与运输行业正迎来一场革命。传统的调度和运输模式已经无法满足快速增长的物流需求和客户期望。在这一领域&#xff0c;ChatGPT作为一种先进的自然语言处理模型&#xff0c;具有巨大的潜力。本文将探讨ChatG…

第三十五章Java面向对象概念及封装、继承、多态三种特性详解

面向对象简称 OO&#xff08;Object Oriented&#xff09;&#xff0c;20 世纪 80 年代以后&#xff0c;有了面向对象分析&#xff08;OOA&#xff09;、 面向对象设计&#xff08;OOD&#xff09;、面向对象程序设计&#xff08;OOP&#xff09;等新的系统开发方式模型的研究。…

ECC加密算法详解+python实现

一.前言 目前比较受欢迎的加密算法一共存在两种&#xff0c;一种是基于大整数因子分解问题&#xff08;IFP&#xff09;的RSA算法和基于椭圆曲线上离散对数计算问题&#xff08;ECDLP&#xff09;的ECC算法。之前对RSA算法进行过很详细的讲解&#xff0c;但是ECC加密算法还没有…

数据库的操作

前言 在之前的文章中&#xff0c;我们已经了解了什么是数据库&#xff0c;以及为什么有数据库&#xff0c;和数据库有什么作用&#xff0c;有了这些宏观概念之后&#xff0c;本章为大家进一步详细介绍对于数据库在Linux上如何具体操作。 1.创建数据库 1.1创建数据库语法 语法…

第十二章 EfficientNetv2网络详解

系列文章目录 第一章 AlexNet网络详解 第二章 VGG网络详解 第三章 GoogLeNet网络详解 第四章 ResNet网络详解 第五章 ResNeXt网络详解 第六章 MobileNetv1网络详解 第七章 MobileNetv2网络详解 第八章 MobileNetv3网络详解 第九章 ShuffleNetv1网络详解 第十章…

【线程池】史上最全的ThreadPoolExecutor源码详解

目录 一、线程池框架 1.1 第一层结构 1.2 接口简介 1.3 核心实现类 1.4 辅助类 1.5 完成服务 二、ThreadPoolExecutor的成员属性和内部类 2.1 主要成员属性以及工具方法 2.2 五种内部类 2.2.1 拒绝策略内部类&#xff08;Policy&#xff09; 2.2.2 工作线程内部类&a…

HHU云计算期末复习(下)Hadoop、虚拟化技术、openstack

文章目录 第五章 Hadoop分布式文件系统HDFS分离元数据和数据&#xff1a;NameNode和DataNode流水线复制 第七章 虚拟化技术7.1 虚拟化技术简介7.2 虚拟机迁移7.3 网络虚拟化 第八章 openstack8.1 计算服务NovaRabbitMQ 8.2 Swift 第九章 云计算数据中心9.1 云数据中心特征9.2 网…

【MySQL数据库】MySQL 高级SQL 语句一

[TOC](MySQL 高级SQL 语句 一、MySQL 高级SQL 语句1.1select -显示表格中一个或数个字段的所有数据记录1.2distinct不显示重复的数据记录1.3where有条件查询1.4and、or且 或1.5in 显示已知的值的数据记录1.6between 显示两个值范围内的数据记录1.7通配符&#xff0c;通常通配符…