一区优化直接写:KOA-CNN-BiLSTM-Attention开普勒优化卷积、长短期记忆网络融合注意力机制的多变量回归预测程序!

适用平台:Matlab 2023版及以上

KOA开普勒优化算法,于2023年5月发表在SCI、中科院1区Top顶级期刊《Knowledge-Based Systems》上。

该算法提出时间很短,目前还没有套用这个算法的文献。

同样的,我们利用该新鲜出炉的算法对我们的CNN-BiLSTM-Attention时序和空间特征结合-融合注意力机制的回归预测程序代码中的超参数进行优化,构成KOA-CNN-BiLSTM-Attention多变量回归预测模型.

这篇论文介绍了一种名为开普勒优化算法(Kepler optimization algorithm,KOA)的新型元启发式算法,并对其进行了评估。KOA算法受开普勒行星运动定律的启发,旨在解决连续优化问题。在KOA中,每个行星及其位置代表一个候选解,通过根据迄今为止的最佳解(太阳)进行随机更新来实现优化过程,从而更有效地探索和利用搜索空间。通过使用各种基准问题对KOA算法的性能进行评估,并与其他随机优化算法进行比较。结果表明,KOA在收敛性和统计数据方面优于其他优化器。

KOA的开普勒优化步骤主要包括初始化行星位置和速度、根据适应度函数评估每个行星的适应度、更新每个行星的位置和速度、更新最佳解(太阳)位置、重复执行更新步骤直到达到停止条件等。这些步骤使得KOA能够在优化过程中更好地探索和利用搜索空间。

构成的KOA-CNN-BiLSTM-Attention多变量回归预测模型的创新性在于以下几点:

KOA算法区别于传统智能算法的创新性:

①受到开普勒行星运动定律的启发:KOA算法受到开普勒行星运动定律的启发,将每个行星的位置作为候选解,并通过随机更新这些候选解来进行优化过程。这种设计使得KOA算法能够更有效地探索和利用搜索空间。

②基于物理学的元启发算法:KOA算法属于物理学的元启发算法,通过模拟行星围绕太阳的运动规律来进行优化。它利用行星的位置、质量、引力和轨道速度等参数来控制候选解的更新过程。这种基于物理学的方法使得KOA算法在全局优化问题上具有更好的可解释性。

③对比其他优化算法的优越性:通过与其他随机优化算法进行对比实验,KOA算法在收敛性和统计数据方面表现出色。实验结果表明,KOA算法在多个基准问题上优于其他比较算法。这表明KOA算法在解决优化问题时具有更高的效果和性能。

优化套用—基于开普勒优化算法(KOA)、卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)融合注意力机制(SelfAttention)的超前24步多变量时间序列回归预测算法KOA-CNN-LSTM-Attention

功能:

1、多变量特征输入,单序列变量输出,输入前一天的特征,实现后一天的预测,超前24步预测。

2、通过KOA优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以最小MAPE为目标函数。

3、提供损失、RMSE迭代变化极坐标图;网络的特征可视化图;测试对比图;适应度曲线(若首轮精度最高,则适应度曲线为水平直线)。

4、提供MAPE、RMSE、MAE等计算结果展示。

适用领域:风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。

数据集格式:

前一天18个气象特征,采样时间为24小时,输出为第二天的24小时的功率出力,也就是18×24输入,1×24输出,一共有75个这样的样本。

预测值与实际值对比;训练特征可视化:

训练误差曲线的极坐标形式(误差由内到外越来越接近0);适应度曲线(误差逐渐下降)

KOA部分核心代码:

%%  定义Sun_Pos   = zeros(1, dim);  %% 包含迄今为止的最优解的向量,表示太阳Sun_Score = inf;            %% 包含迄今为止的最优分数的标量%%  控制参数%%Tc = 3;M0 = 0.1;lambda = 15;%% 第1步:初始化过程% 轨道离心率 (e)   orbital = rand(1, SearchAgents_no);                      %% Eq.(4) %% 轨道周期 (T) T = abs(randn(1, SearchAgents_no));                      %% Eq.(5)Positions = initialization(SearchAgents_no, dim, ub, lb);%% 初始化行星位置t = 0; %% 函数评估计数器 %%%%---------------------评估-----------------------%%for i = 1:SearchAgents_no    %% 目标函数嵌套    [PL_Fit(i),tsmvalue{i},tnet{i},tinfo{i}] = objectiveFunction(Positions(i,:)');        % 更新迄今为止的最优解    if PL_Fit(i) < Sun_Score      %% 问题为最大化时,请将其更改为>       Sun_Score = PL_Fit(i);     %% 更新迄今为止的最优分数       Sun_Pos = Positions(i,:);  %% 更新迄今为止的最优解       bestPred = tsmvalue{i} ;   %% 更新迄今为止的最准确预测结果       bestNet = tnet{i};       bestInfo  = tinfo{i};    endendwhile t < Tmax            %% 终止条件   [Order] = sort(PL_Fit);  %% 对当前种群中的解的适应度值进行排序 %% 函数评估t时的最差适应度值 worstFitness = Order(SearchAgents_no);                  %% Eq.(11) M = M0 * (exp(-lambda * (t / Tmax)));                   %% Eq.(12) %% 计算表示太阳与第i个解之间的欧几里得距离R for i = 1:SearchAgents_no    R(i) = 0;    for j = 1:dim       R(i) = R(i) + (Sun_Pos(j) - Positions(i, j))^2;   %% Eq.(7)    end    R(i) = sqrt(R(i)); end %% 太阳和对象i在时间t的质量计算如下: for i = 1:SearchAgents_no    sum = 0;    for k = 1:SearchAgents_no        sum = sum + (PL_Fit(k) - worstFitness);    end    MS(i) = rand * (Sun_Score - worstFitness) / (sum);   %% Eq.(8)    m(i) = (PL_Fit(i) - worstFitness) / (sum);           %% Eq.(9) end  %% 第2步:定义引力(F) % 计算太阳和第i个行星的引力,根据普遍的引力定律: for i = 1:SearchAgents_no    Rnorm(i) = (R(i) - min(R)) / (max(R) - min(R));      %% 归一化的R(Eq.(24))    MSnorm(i) = (MS(i) - min(MS)) / (max(MS) - min(MS)); %% 归一化的MS    Mnorm(i) = (m(i) - min(m)) / (max(m) - min(m));      %% 归一化的m    Fg(i) = orbital(i) * M * ((MSnorm(i) * Mnorm(i)) / (Rnorm(i) * Rnorm(i) + eps)) + (rand); %% Eq.(6) end

部分图片来源于网络,侵权联系删除!

欢迎感兴趣的小伙伴联系小编获得完整版代码哦~

关注小编会不定期推送高创新型、高质量的学习资料、文章程序代码,为你的科研加油助力!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/332638.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

运维平台介绍:视频智能运维平台的视频质量诊断分析和告警中心

目 录 一、视频智能运维平台介绍 &#xff08;一&#xff09;平台概述 &#xff08;二&#xff09;结构图 &#xff08;三&#xff09;功能介绍 1、运维监控 2、视频诊断 3、巡检管理 4、告警管理 5、资产管理 6、工单管理 7、运维…

jrebel IDEA 热部署

1 下载 2022.4.1 JRebel and XRebel - IntelliJ IDEs Plugin | Marketplace 2 选择下载好的zip 离线安装IDEA 插件 重启IDEA 3 打开 [Preference -> JRebel & XRebel] 菜单&#xff0c;输入 GUID address 为 https://jrebel.qekang.com/1e67ec1b-122f-4708-87d…

Data Bricks Delta Lake 入门

Delta Lake 是一个开源存储层&#xff0c;它将关系数据库语义添加到基于 Spark 的数据湖处理中。 适用于 PySpark、Scala 和 .NET 代码的 Azure Synapse Analytics Spark , Azure DataBricks 都支持 Delta Lake。在大数据这个领域&#xff0c;对象存储的最影响效率的问题就是针…

【C语言】linux内核ipoib模块 - ipoib_start_xmit

一、ipoib_start_xmit函数定义 static netdev_tx_t ipoib_start_xmit(struct sk_buff *skb, struct net_device *dev) {struct ipoib_dev_priv *priv ipoib_priv(dev);struct rdma_netdev *rn netdev_priv(dev);struct ipoib_neigh *neigh;struct ipoib_pseudo_header *phdr…

【保姆级教程|YOLOv8改进】【3】使用FasterBlock替换C2f中的Bottleneck

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…

代码、课程、教学的一些思考-2024

1 代码、算法、艺术品 1.1 代码 最典型的C代码示例。 以下是一个简单的C代码示例&#xff0c;它打印出“Hello, World!”&#xff1a; #include <iostream> int main() { std::cout << "Hello, World!"; return 0; } 这段代码定义了一个程序&a…

鲁大师2023年牛角尖颁奖盛典落幕,顶尖产品之间的又一次碰撞

1月18日&#xff0c;鲁大师2023年度牛角尖颁奖典礼在四川省内江市威远县船石湖豪生温泉度假酒店完美落幕。 本届鲁大师牛角尖颁奖盛典举办地选在了威远县可谓是深有其意&#xff0c;其名称的由来最早可追溯到隋朝&#xff0c;取“威名远震”之意。而这也与鲁大师牛角尖奖项的设…

Apache安全及优化

配置第一台虚拟机 VM1网卡 yum仓库 挂载磁盘 上传3个软件包到/目录 到/目录下进行解压缩 tar xf apr-1.6.2.tar.gz tar xf apr-util-1.6.0.tar.gz tar -xjf httpd-2.4.29.tar.bz2 mv apr-1.6.2 httpd-2.4.29/srclib/apr mv apr-util-1.6…

基于Springboot+vue鲜花商城系统(前后端分离)

该项目完全免费 项目技术栈&#xff1a; 前端&#xff1a;vueelementUIecharts 后端&#xff1a;SpringbootmybatisMySQL 项目主要功能&#xff1a; 商品信息 商品分类 角色管理 公告管理 轮播图管理 订单管理 收货地址管理 日志管理 部分功能截图&#xff1a;

大数据工作岗位分析

前言&#xff1a;随着大数据需求的增多&#xff0c;许多中小公司和团队也新增或扩展了大数据工作岗位&#xff1b;但是却对大数据要做什么和能做什么&#xff0c;没有深入的认识&#xff1b;往往是招了大数据岗位&#xff0c;搭建起基础能力后&#xff0c;就一直处于重复开发和…

【Linux】

Linux零基础入门 列出文件/文件夹新建/切换路径查看当前路径重命名或者移动文件夹拷贝文件/文件夹删除文件夹设置环境变量编辑文本文件压缩和解压查看cpu的信息查看/杀死进程查看进程的CPU和内存占用重定向日志场景一场景二场景三场景四 列出文件/文件夹 命令&#xff1a;Ls(L…

2017年认证杯SPSSPRO杯数学建模A题(第一阶段)安全的后视镜全过程文档及程序

2017年认证杯SPSSPRO杯数学建模 A题 安全的后视镜 原题再现&#xff1a; 汽车后视镜的视野对行车安全非常重要。一般来说&#xff0c;汽车的后视镜需要有良好的视野范围&#xff0c;以便驾驶员能够全面地了解车后方的道路情况。同时&#xff0c;后视镜也要使图像的畸变尽可能…

shopee选品案例分析:如何在Shopee平台上进行选品并取得成功

在Shopee平台上进行选品是卖家们开设店铺的重要步骤之一。通过分析成功案例&#xff0c;卖家们可以获取灵感和策略&#xff0c;从而更好地进行选品。本文将以一个女装店铺为例&#xff0c;介绍如何在Shopee平台上进行选品并取得成功。 先给大家推荐一款shopee知虾数据运营工具…

人工智能之卷积神经网络(CNN)

前言&#xff1a;今天我们重点探讨一下卷积神经网络(CNN)算法。 _ 20世纪60年代&#xff0c;Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性&#xff0c;继而提出了卷积神经网络CNN&#xff08;Convo…

详解IP安全:IPSec协议簇 | AH协议 | ESP协议 | IKE协议_ipsec esp

目录 IP安全概述 IPSec协议簇 IPSec的实现方式 AH&#xff08;Authentication Header&#xff0c;认证头&#xff09; ESP&#xff08;Encapsulating Security Payload&#xff0c;封装安全载荷&#xff09; IKE&#xff08;Internet Key Exchange&#xff0c;因特网密钥…

分布式文件系统协议:NFS(Network File System)网络文件系统

文章目录 NFS名词解释NFS的历史版本NFS支持的操作系统NFS工作原理NFS使用的端口NFS的认证机制NFS的优点NFS使用场景推荐阅读 NFS名词解释 NFS&#xff08;Network File System&#xff09;网络文件系统是一种分布式文件系统协议&#xff0c;最初由Sun Microsystems开发&#x…

Vue中的日历组件 Calendar 实现 考勤打卡记录

日历组件 Calendar 可以自定义在页面添加内容。 实现效果图 1.由于Calendar没有右上角月份切换的API事件&#xff0c;可以给组件源码添加自定义添加一个事件 2.也可以通过自带的input事件来获取日历 3.vue页面完整代码 注释&#xff1a;this.$m(this.beginTime).format(…

揭秘程序栈:你的代码在幕后是怎么运行的?

计算机科学中&#xff0c;许多概念和原理可能会让开发者感到头疼&#xff0c;比如程序栈。这个看似晦涩的概念&#xff0c;实对我们理解程序运行至关重要。本文将以通俗易懂的方式&#xff0c;带你深入理解程序栈的工作原理和优化策略。 一、为什么需要栈&#xff1f; 栈是一…

Jupyter-Notebook无法创建ipynb文件

文章目录 概述排查问题恢复方法参考资料 概述 用户反馈在 Notebook 上无法创建 ipynb 文件&#xff0c;并且会返回以下的错误。 报错的信息是: Unexpected error while saving file: Untitled5.ipynb attempt to write a readonly database 排查问题 这个是一个比较新的问…

保姆版Vps安装灯塔(ARL)

因为灯塔的默认端口为5003&#xff0c;所以我们在安装之前就在防火墙里把我们的5003端口打开 打开端口步骤如下&#xff1a; 1.我们打开控制面板&#xff0c;在控制面板里点击 系统和安全 。如下图&#xff1a; 2.接着点击 Windows Defender防火墙,如下图&#xff1a; 3.再…