[SS]语义分割_转置卷积

转置卷积(Transposed Convolution)

抽丝剥茧,带你理解转置卷积(反卷积) 

目录

一、概念

1、定义 

2、运算步骤

二、常见参数


一、概念

1、定义 

        转置卷积(Transposed Convolution),也被称为反卷积(Deconvolution)或逆卷积(Inverse Convolution),是一种卷积神经网络中常用的操作。转置卷积可以用于图像生成、图像分割、语义分割等任务中。

        转置卷积的操作实际上是卷积操作的逆过程。在标准的卷积操作中,输入数据经过卷积核的滑动窗口运算,生成输出特征图。而在转置卷积中,输出特征图经过转置卷积核的滑动窗口运算,生成输入数据的近似重构。

        转置卷积的操作可以用矩阵乘法的方式来实现,也可以用卷积的方式来实现。在实际应用中,常常使用卷积的方式来实现转置卷积,而不是直接进行矩阵乘法运算。

转置卷积的计算过程可以简化为以下几个步骤:

  1. 在输入特征图上进行填充操作,将输入特征图的尺寸扩大一定倍数(根据转置卷积核的大小和步长确定)。
  2. 将填充后的输入特征图与转置卷积核进行卷积操作,得到中间特征图。
  3. 对中间特征图进行剪裁操作,使其尺寸与输入特征图相同。
  4. 得到转置卷积的输出特征图。

        通过转置卷积操作,可以将低维的输入特征图扩张为高维的输出特征图,从而实现图像的生成和重构。转置卷积在卷积神经网络中得到广泛应用,如生成对抗网络(GANs)、语义分割网络等。

notes:

  • 转置卷积不是卷积的逆运算,只是将特征图大小还原回卷积之前的大小,数值与输入特征层的数值不相同
  • 转置卷积也是卷积
  • 转置卷积的作用是上采样

2、运算步骤

转置卷积运算步骤:

  • 在输入特征图元素间填充s-1行、列0
  • 在输入特征图四周填充k-p-1行、列0
  • 将卷积核参数上下、左右翻转
  • 做正常卷积运算(填充0,步距1)

        输入的特征图大小为2x2(假设输入输出都为单通道),通过转置卷积后得到4x4大小的特征图。这里使用的转置卷积核大小为k=3,stride=1,padding=0的情况(忽略偏执bias)。

notes:

        做正常卷积运算中的步距与第一步中的参数s不一样,参数s对应的是转置卷积中的参数s,即输入的特征图是经过步距为s、padding为p,卷积核大小为k的卷积之后得到的。 

二、常见参数

torch.nn.ConvTranspose2d参数

H_{out}=(H_{in}-1)\times stride[0]-2\times padding[0]+dilation[0]\times (kernelSize[0]-1)+outputPadding[0]+1

W_{out}=(W_{in}-1)\times stride[1]-2\times padding[1]+dilation[1]\times (kernelSize[1]-1)+outputPadding[1]+1 

  • in_channels(int)-输入特征图通道数
  • out_channels(int)-输出特征图通道数
  • kernel_size(int or tuple)-卷积核大小
  • stride(int or tuple,optional)-步距大小
  • padding(int or tuple,optional)-填充
  • output_padding(int or tuple,optional)-输出填充,通常默认为0
  • groups(int,optional)-是否采用主卷积,默认为1
  • bias(bool,optional)-偏置,默认为True
  • dilation(int or tuple,optional)-是否使用膨胀卷积或空洞卷积,默认为1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/332230.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Flink编程——风险欺诈检测

Flink 风险欺诈检测 文章目录 Flink 风险欺诈检测背景准备条件FraudDetectionJob.javaFraudDetector.java 代码分析执行环境创建数据源对事件分区 & 欺诈检测输出结果运行作业欺诈检测器 欺诈检测器 v1:状态欺诈检测器 v2:状态 时间完整的程序期望的…

MFC 序列化机制

目录 文件操作相关类 序列化机制相关类 序列化机制使用 序列化机制执行过程 序列化类对象 文件操作相关类 CFile:文件操作类,封装了关于文件读写等操作,常见的方法: CFile::Open:打开或者创建文件CFile::Write/…

mybatisPlus注解将List集合插入到数据库

1.maven引入依赖&#xff08;特别注意版本&#xff0c;3.1以下不支持&#xff09; <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.4.3.1</version></dependency&g…

Android Studio读写低频RFID T5557卡源码

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?id675212889085&spma1z10.5-c.w4002-21818769070.13.21166f89nKgnJ7 <?xml version"1.0" encoding"utf-8"?> <androidx.constraintlayout.widget.ConstraintLayout xml…

SD-WAN组网设计原则:灵活、安全、高效

在实现按需、灵活和安全的SD-WAN组网方案中&#xff0c;我们必须遵循一系列关键的设计原则&#xff0c;以确保网络的可靠性和效率。通过以下几点设计原则&#xff0c;SD-WAN能够满足企业对灵活性、安全性和高效性的迫切需求。 灵活的Overlay网络互联 SD-WAN通过IP地址在站点之间…

linux基础学习(2):磁盘管理、分区、格式化

1.一些基本概念 一块磁盘从加入到可使用&#xff0c;需要经过3个阶段&#xff1a;分区-格式化-挂载。 1.1分区方式 linux有2种分区方式&#xff1a; &#xff08;1&#xff09;mbr&#xff1a;最大支持2.1T硬盘&#xff0c;最多支持4个分区。这4个分区可以全部为主分区&…

(设置非自定义Bean)学习Spring的第六天

一 . 获取Bean的方法详解 , 如下图 : 二 . Spring配置非自定义bean----DruidDatasource 我们举个例子 : 配置Druid数据源交由Spring管理 首先导入在pom文件Druid坐标 然后考虑 : 被配置的Bean的实例化方式是什么 : 无参构造 被配置的Bena是否要注入必要属性 : 四个基本信息…

防火墙技术

防火墙&#xff08;英语&#xff1a;Firewall&#xff09;技术是通过有机结合各类用于安全管理与筛选的软件和硬件设备&#xff0c;帮助计算机网络于其内、外网之间构建一道相对隔绝的保护屏障&#xff0c;以保护用户资料与信息安全性的一种技术。 防火墙技术的功能主要在于及…

查找局域网树莓派raspberry的mac地址和ip

依赖python库&#xff1a; pip install socket pip install scapy运行代码&#xff1a; import socket from scapy.layers.l2 import ARP, Ether, srpdef get_hostname(ip_address):try:return socket.gethostbyaddr(ip_address)[0]except socket.herror:# 未能解析主机名ret…

ARP相关

ARP报文格式&#xff1a; 目的以太网地址&#xff0c;48bit&#xff0c;发送ARP请求时&#xff0c;目的以太网地址为广播MAC地址&#xff0c;即0xFF.FF.FF.FF.FF.FF。 源以太网地址&#xff0c;48bit。 帧类型&#xff0c;对于ARP请求或者应答&#xff0c;该字段的值都为0x08…

iOS原生应用屏幕适配完整流程

1. 已iPhone 11 布局为设计布局,其他机型已这个来适配 2.变量与控件对应关系 txtViewer: txtAccount txtpwd seg btnOk 3.适配方法实现: //iOS屏幕适配 -(vo

设计PCB阻抗

https://zhuanlan.zhihu.com/p/589924395 1. 原理图设计 电路板的设计始于设计工程师设计电路原理图。 1.1, 工程师必须在原理图中指定受控阻抗信号&#xff0c;并将特定网络分类为差分对&#xff08;1002、902或852&#xff09;或单端网络&#xff08;402、502、552、602或75…

期末python实验一,二作业-对象编程【仅供参考】

目录 实验一西游游戏-对象 1&#xff0c;选择角色后&#xff0c;角色不能改 2&#xff0c;选择角色后&#xff0c;角色可以改 实验二猜拳游戏-对象 实验一西游游戏-对象 老师给的题目材料&#xff1a; 第一步&#xff1a;系统登录 失败时允许重复输入三次&#xff01; 第二…

设计 Mint.com

1. 梳理 User Case 和 约束 Use cases 作用域内的Use Case User 连接到 financial accountService 从 Account 中提取 transactions 日常 Update整理 transaction 所有的手动目录由 User 覆盖没有自动化的重排机制 - 通过目录分析月消费 Service 推荐 budget 允许 user 去…

小封装高稳定性振荡器 Sg2520egn / sg2520vgn, sg2520ehn / sg2520vhn

描述 随着物联网和ADAS等5G应用的实施&#xff0c;数据流量不断增长&#xff0c;网络基础设施变得比以往任何时候都更加重要。IT供应商一直在快速建设数据中心&#xff0c;并且对安装在数据中心内部/内部的光模块有很大的需求。此应用需要具有“小”&#xff0c;“低抖动”和“…

Redis分布式锁存在的问题以及解决方式

☆* o(≧▽≦)o *☆嗨~我是小奥&#x1f379; &#x1f4c4;&#x1f4c4;&#x1f4c4;个人博客&#xff1a;小奥的博客 &#x1f4c4;&#x1f4c4;&#x1f4c4;CSDN&#xff1a;个人CSDN &#x1f4d9;&#x1f4d9;&#x1f4d9;Github&#xff1a;传送门 &#x1f4c5;&a…

【前沿技术杂谈:智能对话的未来】深入比较ChatGPT与文心一言

【前沿技术杂谈&#xff1a;智能对话的未来】深入比较ChatGPT与文心一言 引言主体智能回复语言准确性知识库丰富度 深入分析&#xff1a;ChatGPT与文心一言的技术对比技术架构和算法数据处理和隐私用户界面和体验 应用场景分析未来展望技术进步的趋势潜在的挑战对社会的影响 结…

2018年认证杯SPSSPRO杯数学建模C题(第二阶段)机械零件加工过程中的位置识别全过程文档及程序

2018年认证杯SPSSPRO杯数学建模 基于轮廓提取与图像配准的零件定位问题研究 C题 机械零件加工过程中的位置识别 原题再现&#xff1a; 在工业制造自动生产线中&#xff0c;在装夹、包装等工序中需要根据图像处理利用计算机自动智能识别零件位置&#xff0c;并由机械手将零件…

JDBC编程详细教程与示例源码

版权声明 本文原创作者&#xff1a;谷哥的小弟作者博客地址&#xff1a;http://blog.csdn.net/lfdfhl JDBC概述 为了在Java语言中提供对数据库访问的支持&#xff0c;Sun公司于1996年提供了一套访问数据库的标准Java类库JDBC。JDBC的全称是Java数据库连接(Java Database Conn…

怎么样的布局是符合可制造性的PCB布局?

满足可制造性、可装配性、可维修性要求&#xff0c;方便调试的时候于检测和返修&#xff0c;能够方便的拆卸器件&#xff1a; 1&#xff09;极性器件的方向不要超过2种&#xff0c;最好都进行统一方向等要求&#xff0c;如图1-1所示&#xff1b; 图1-1 极性器件方向统一摆放 2…