系列文章
李沐《动手学深度学习》预备知识 张量操作及数据处理
李沐《动手学深度学习》预备知识 线性代数及微积分
李沐《动手学深度学习》线性神经网络 线性回归
目录
- 系列文章
- 一、softmax回归
- (一)问题背景
- (二)网络架构
- (三)softmax运算
- (四)小批量样本的矢量化
- (五)损失函数
- 二、图像分类数据集
- (一)读取数据集
- (二)读取小批量
- (三)整合所有组件
- 三、softmax的从零开始实现
- (一)导入相关库、数据获取
- (二)初始化模型参数
- (三)定义模型
- (四)定义损失函数
- (五)分类精度
- (六)训练
- (七)预测
- 四、softmax的简洁实现
- (一)导入相关库、数据获取
- (二)初始化模型参数
- (三)优化算法
- (四)训练
教材:李沐《动手学深度学习》
一、softmax回归
(一)问题背景
- 回归用于预测多少的问题,分类问题用于预测“哪一个”的问题;
- 独热编码是一种表示分类数据的简单方法:独热编码是一个向量,它的分量和类别一样多。 类别对应的分量设置为1,其他所有分量设置为0;
- 硬性类别和软性类别的区分:硬性类别是指只关心样本属于哪个类别这一结果,软性类别是指样本属于每个类别的概率;
- softmax回归将输入的线性组合通过softmax函数映射到一个概率分布上,使得每个类别的输出概率在0到1之间,并且所有类别的概率之和等于1;
- softmax回归是逻辑回归的扩展,适用于具有多个类别的分类问题。
(二)网络架构
- 为了解决线性模型的分类问题,估计出所有可能类别的条件概率,需要有多个仿射函数对应多个类别的输出,softmax回归中使用仿射函数可以为输入计算出未规范化的预测
o
1
o_1
o1、
o
2
o_2
o2以及
o
3
o_3
o3:
o 1 = x 1 w 11 + x 2 w 12 + x 3 w 13 + x 4 w 14 + b 1 o 2 = x 1 w 21 + x 2 w 22 + x 3 w 23 + x 4 w 24 + b 1 o 2 = x 1 w 21 + x 2 w 22 + x 3 w 23 + x 4 w 24 + b 1 o_1=x_1w_{11}+x_2w_{12}+x_3w_{13}+x_4w{14}+b_1 \\ o_2=x_1w_{21}+x_2w_{22}+x_3w_{23}+x_4w{24}+b_1 \\ o_2=x_1w_{21}+x_2w_{22}+x_3w_{23}+x_4w{24}+b_1 o1=x1w11+x2w12+x3w13+x4w14+b1o2=x1w21+x2w22+x3w23+x4w24+b1o2=x1w21+x2w22+x3w23+x4w24+b1 - 与线性回归一样,softmax回归也是一个单层神经网络。 由于计算每个输出 o 1 o_1 o1、 o 2 o_2 o2、 o 3 o_3 o3都取决于所有输入 x 1 x_1 x1、 x 2 x_2 x2、 x 3 x_3 x3和 x 4 x_4 x4, 所以softmax回归的输出层也是全连接层。
在全连接层中,每个神经元都接收上一层所有神经元的输出,并将它们进行加权求和,然后通过激活函数来生成该神经元的输出。
- 向量形式表达:(其中W是3x4的权重矩阵)
o = W x + b o=Wx+b o=Wx+b
(三)softmax运算
- 未规范化的预测
o
o
o违反了概率基本公理:
- 没有限制这些输出数字的总和为1;
- 可以为负值。
- softmax函数能够将未规范化的预测变换为非负数并且总和为1,同时让模型保持可导的性质:
y
^
=
s
o
f
t
m
a
x
(
o
)
,其中
y
^
j
=
e
x
p
(
o
j
)
∑
k
e
x
p
(
o
k
)
\hat{y}=softmax(o) ,其中 \hat{y}_j=\frac{exp(o_j)}{\sum_{k}exp(o_k)}
y^=softmax(o),其中y^j=∑kexp(ok)exp(oj) 之后选择最有可能的类别:
argmax
j
y
^
j
=
argmax
j
o
j
\underset {j} { \operatorname {argmax} }\hat{y}_j=\underset {j} { \operatorname {argmax} }o_j
jargmaxy^j=jargmaxoj
- softmax是一个非线性函数,但softmax回归的输出仍然由输入特征的仿射变换决定。 因此,softmax回归是一个线性模型。
(四)小批量样本的矢量化
对小批量样本的数据执行矢量计算可以提高计算效率并且充分利用GPU。softmax回归的矢量计算表达式为:(其中求和会使用广播机制,实例化说明线性回归中矢量化加速)
O
=
X
W
+
b
,
Y
^
=
s
o
f
t
m
a
x
(
O
)
O=XW+b, \\ \hat{Y}=softmax(O)
O=XW+b,Y^=softmax(O)
(五)损失函数
-
交叉熵采用真实标签的预测概率的负对数似然,可以很好的度量两个概率分布之间的差异,softmax回归的损失函数为交叉熵损失:
l ( y , y ^ ) = − ∑ j = 1 q y j l o g y ^ j l(y,\hat{y})=-{\sum_{j=1}^qy_jlog\hat{y}_j} l(y,y^)=−j=1∑qyjlogy^j -
损失函数的拆解:
损失函数求导:
因此,损失函数的导数是softmax模型分配的概率与实际发生的情况(由独热标签向量表示)之间的差异,由于梯度是观测值与估计值之间的差异,这一性质使得梯度计算在实践中变得容易很多。
二、图像分类数据集
%matplotlib inline
import torch
import torchvision #torch类型的可视化包,一般计算机视觉和数据可视化需要使用
from torch.utils import data #用于数据加载和处理
from torchvision import transforms #图像处理工具和数据转换函数
from d2l import torch as d2l #提供了一些实用的函数和工具,以简化深度学习任务的实现和理解
d2l.use_svg_display() #使用什么模式展示图片
(一)读取数据集
- 通过框架中的内置函数下载Fashion-MNIST数据集
trans = transforms.ToTensor() #通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式
mnist_train = torchvision.datasets.FashionMNIST(
root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
root="../data", train=False, transform=trans, download=True)
- 查看数据集
#训练集和测试集的大小
len(mnist_train), len(mnist_test)
#数据集由灰度图像组成,其通道数为1,每个输入图像的高度和宽度均为28像素
mnist_train[0][0].shape
- 可视化数据
#在数字标签索引及其文本名称之间进行转换
def get_fashion_mnist_labels(labels): #@save
"""返回Fashion-MNIST数据集的文本标签"""
text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
return [text_labels[int(i)] for i in labels]
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): #@save
"""绘制图像列表"""
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):
if torch.is_tensor(img):
# 图片张量
ax.imshow(img.numpy())
else:
# PIL图片
ax.imshow(img)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:
ax.set_title(titles[i])
return axes
X, y = next(iter(data.DataLoader(mnist_train, batch_size=18)))
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y));
(二)读取小批量
使用内置的数据迭代器,可以随机打乱所有样本,从而无偏见地读取小批量;在每次迭代中,数据加载器每次都会读取一小批量数据,大小为batch_size。
batch_size = 256
def get_dataloader_workers(): #@save
"""使用4个进程来读取数据"""
return 4
train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,
num_workers=get_dataloader_workers())
(三)整合所有组件
load_data_fashion_mnist函数:
- 输入:批量大小,需要调整的形状大小
- 输出:训练集和验证集的数据迭代器
- 用于获取和读取Fashion-MNIST数据集,并将图像大小调整为另一种形状。
def load_data_fashion_mnist(batch_size, resize=None): #@save
"""下载Fashion-MNIST数据集,然后将其加载到内存中"""
trans = [transforms.ToTensor()]
if resize:
trans.insert(0, transforms.Resize(resize))
trans = transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(
root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
root="../data", train=False, transform=trans, download=True)
return (data.DataLoader(mnist_train, batch_size, shuffle=True,
num_workers=get_dataloader_workers()),
data.DataLoader(mnist_test, batch_size, shuffle=False,
num_workers=get_dataloader_workers()))
函数调用:
train_iter, test_iter = load_data_fashion_mnist(32, resize=64)
for X, y in train_iter:
print(X.shape, X.dtype, y.shape, y.dtype)
break
三、softmax的从零开始实现
(一)导入相关库、数据获取
导入相关库,设置批量大小为256,调用load_data_fashion_mnist函数获取数据集
import torch
from IPython import display
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
(二)初始化模型参数
- 输入:原始数据集中图像大小为28x28, 展平后,向量长度为784;
- 输出:10个类别
- 权重:784x10的矩阵,用正态分布初始化
- 偏置:1x10的行向量,初始化为0
num_inputs = 784
num_outputs = 10
W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)
(三)定义模型
s o f t m a x ( X ) i j = e x p ( X i j ) ∑ k e x p ( X i k ) softmax(X)_{ij}=\frac{exp(X_{ij})}{\sum_{k}exp(X_{ik})} softmax(X)ij=∑kexp(Xik)exp(Xij)
实现softmax的三个步骤:
- 对每个项求幂(使用exp);
- 对每一行求和(小批量中每个样本是一行),得到每个样本的规范化常数;
- 将每一行除以其规范化常数,确保结果的和为1。
def softmax(X):
X_exp = torch.exp(X)
partition = X_exp.sum(1, keepdim=True)
return X_exp / partition # 这里应用了广播机制
定义softmax操作后,可以实现softmax回归模型:
- 使用reshape函数将每张原始图像展平为向量
- 使用仿射函数为输入计算出未规范化的预测 o = w x + b o=wx+b o=wx+b
- 使用softmax函数转换输出
def net(X):
return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)
(四)定义损失函数
def cross_entropy(y_hat, y):
return - torch.log(y_hat[range(len(y_hat)), y])
cross_entropy(y_hat, y)
(五)分类精度
分类精度是正确预测数量与总预测数量之比:
- 计算预测正确的数量
def accuracy(y_hat, y): #@save
"""计算预测正确的数量"""
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
cmp = y_hat.type(y.dtype) == y #比较模型的预测结果 y_hat 与真实标签 y 是否相等
return float(cmp.type(y.dtype).sum())
- 计算分类精度
accuracy(y_hat, y) / len(y)
- 评估模型的精度
def evaluate_accuracy(net, data_iter): #@save
"""计算在指定数据集上模型的精度"""
if isinstance(net, torch.nn.Module):#检查 net 是否是 PyTorch 中的神经网络模型
net.eval() #将模型切换到推断模式。在推断模式下模型通常不会更新权重和梯度,以提高评估性能。
metric = Accumulator(2) # 使用累加器记录正确预测数、预测总数
with torch.no_grad():
for X, y in data_iter:
metric.add(accuracy(net(X), y), y.numel())
return metric[0] / metric[1]
其中Accumulator为定义的累加器:
class Accumulator: #@save
"""在n个变量上累加"""
def __init__(self, n):
self.data = [0.0] * n
def add(self, *args):
self.data = [a + float(b) for a, b in zip(self.data, args)]
def reset(self):
self.data = [0.0] * len(self.data)
def __getitem__(self, idx):
return self.data[idx]
代入计算:
evaluate_accuracy(net, test_iter)
(六)训练
- 训练模型一个迭代周期
def train_epoch_ch3(net, train_iter, loss, updater): #@save
"""训练模型一个迭代周期"""
# 将模型设置为训练模式
if isinstance(net, torch.nn.Module):
net.train()
# 训练损失总和、训练准确度总和、样本数
metric = Accumulator(3)
for X, y in train_iter:
# 计算梯度并更新参数
y_hat = net(X)
l = loss(y_hat, y)
if isinstance(updater, torch.optim.Optimizer):
# 使用PyTorch内置的优化器和损失函数
updater.zero_grad()
l.mean().backward()
updater.step()
else:
# 使用定制的优化器和损失函数
l.sum().backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
# 返回训练损失和训练精度
return metric[0] / metric[2], metric[1] / metric[2]
- 在动画中绘制数据
class Animator: #@save
"""在动画中绘制数据"""
def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
figsize=(3.5, 2.5)):
# 增量地绘制多条线
if legend is None:
legend = []
d2l.use_svg_display()
self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
if nrows * ncols == 1:
self.axes = [self.axes, ]
# 使用lambda函数捕获参数
self.config_axes = lambda: d2l.set_axes(
self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
self.X, self.Y, self.fmts = None, None, fmts
def add(self, x, y):
# 向图表中添加多个数据点
if not hasattr(y, "__len__"):
y = [y]
n = len(y)
if not hasattr(x, "__len__"):
x = [x] * n
if not self.X:
self.X = [[] for _ in range(n)]
if not self.Y:
self.Y = [[] for _ in range(n)]
for i, (a, b) in enumerate(zip(x, y)):
if a is not None and b is not None:
self.X[i].append(a)
self.Y[i].append(b)
self.axes[0].cla()
for x, y, fmt in zip(self.X, self.Y, self.fmts):
self.axes[0].plot(x, y, fmt)
self.config_axes()
display.display(self.fig)
display.clear_output(wait=True)
- 实现一个训练函数:
- 在train_iter访问到的训练数据集上训练一个模型net;
- 该训练函数将会运行多个迭代周期(由num_epochs指定)
- 在每个迭代周期结束时,利用test_iter访问到的测试数据集对模型进行评估
- 利用Animator类来可视化训练进度。
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater): #@save
"""训练模型"""
animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
legend=['train loss', 'train acc', 'test acc'])
for epoch in range(num_epochs):
train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
test_acc = evaluate_accuracy(net, test_iter)
animator.add(epoch + 1, train_metrics + (test_acc,))
train_loss, train_acc = train_metrics
assert train_loss < 0.5, train_loss
assert train_acc <= 1 and train_acc > 0.7, train_acc
assert test_acc <= 1 and test_acc > 0.7, test_acc
- 小批量随机梯度下降优化模型的损失函数
lr = 0.1
def updater(batch_size):
return d2l.sgd([W, b], lr, batch_size)
- 10个迭代周期的训练
num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)
(七)预测
def predict_ch3(net, test_iter, n=6): #@save
"""预测标签"""
for X, y in test_iter:
break
trues = d2l.get_fashion_mnist_labels(y)
preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
d2l.show_images(
X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])
predict_ch3(net, test_iter)
四、softmax的简洁实现
(一)导入相关库、数据获取
使用Fashion-MNIST数据集,并保持批量大小为256。
import torch
from torch import nn
from d2l import torch as d2l
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
(二)初始化模型参数
- 展平层:调整网络输入的形状
- 全连接层/线性层:输入是784,输出是10
- 参数初始化:均值0和标准差0.01随机初始化权重
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))
def init_weights(m):
if type(m) == nn.Linear:
nn.init.normal_(m.weight, std=0.01)
net.apply(init_weights);
(三)优化算法
- 定义损失函数
loss = nn.CrossEntropyLoss(reduction='none')
- 使用学习率为0.1的小批量随机梯度下降作为优化算法
trainer = torch.optim.SGD(net.parameters(), lr=0.1)
(四)训练
num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)