Go 中 slice 的 In 功能实现探索

在这里插入图片描述

文章目录

    • 遍历
    • 二分查找
    • map key
    • 性能
    • 总结

之前在知乎看到一个问题:为什么 Golang 没有像 Python 中 in 一样的功能?于是,搜了下这个问题,发现还是有不少人有这样的疑问。

补充:本文写于 2019 年。GO 现在已经支持泛型,而且新增了一个 slices 包,已经支持了 Contains 方法。

今天来谈谈这个话题。

in 是一个很常用的功能,有些语言中可能也称为 contains,虽然不同语言的表示不同,但基本都是有的。不过可惜的是,Go 却没有,它即没有提供类似 Python 操作符 in,也没有像其他语言那样提供这样的标准库函数,如 PHP 中 in_array。

Go 的哲学是追求少即是多。我想或许 Go 团队觉得这是一个实现起来不足为道的功能吧。

为何说微不足道?如果要自己实现,又该如何做呢?

我所想到的有三种实现方式,一是遍历,二是 sort 的二分查找,三是 map 的 key 索引。

本文相关源码已经上传在我的 github 上,poloxue/gotin。

遍历

遍历应该是我们最容易想到的最简单的实现方式。

示例如下:

func InIntSlice(haystack []int, needle int) bool {
	for _, e := range haystack {
		if e == needle {
			return true
		}
	}

	return false
}

上面演示了如何在一个 []int 类型变量中查找指定 int 是否存在的例子,是不是非常简单,由此我们也可以感受到我为什么说它实现起来微不足道。

这个例子有个缺陷,它只支持单一类型。如果要支持像解释语言一样的通用 in 功能,则需借助反射实现。

代码如下:

func In(haystack interface{}, needle interface{}) (bool, error) {
	sVal := reflect.ValueOf(haystack)
	kind := sVal.Kind()
	if kind == reflect.Slice || kind == reflect.Array {
		for i := 0; i < sVal.Len(); i++ {
			if sVal.Index(i).Interface() == needle {
				return true, nil
			}
		}

		return false, nil
	}

	return false, ErrUnSupportHaystack
}

为了更加通用,In 函数的输入参数 haystack 和 needle 都是 interface{} 类型。

简单说说输入参数都是 interface{} 的好处吧,主要有两点,如下:

其一,haystack 是 interface{} 类型,使 in 支持的类型不止于 slice,还包括 array。我们看到,函数内部通过反射对 haystack 进行了类型检查,支持 slice(切片)与 array(数组)。如果是其他类型则会提示错误,增加新的类型支持,如 map,其实也很简单。但不推荐这种方式,因为通过 _, ok := m[k] 的语法即可达到 in 的效果。

其二,haystack 是 interface{},则 []interface{} 也满足要求,并且 needle 是 interface{}。如此一来,我们就可以实现类似解释型语言一样的效果了。

怎么理解?直接示例说明,如下:

gotin.In([]interface{}{1, "two", 3}, "two")

haystack 是 []interface{}{1, “two”, 3},而且 needle 是 interface{},此时的值是 “two”。如此看起来,是不是实现了解释型语言中,元素可以是任意类型,不必完全相同效果。如此一来,我们就可以肆意妄为的使用了。

但有一点要说明,In 函数的实现中有这样一段代码:

if sVal.Index(i).Interface() == needle {
	...
}

Go 中并非任何类型都可以使用 == 比较的,如果元素中含有 slice 或 map,则可能会报错。

二分查找

以遍历确认元素是否存在有个缺点,那就是,如果数组或切片中包含了大量数据,比如 1000000 条数据,即一百万,最坏的情况是,我们要遍历 1000000 次才能确认,时间复杂度 On。

有什么办法可以降低遍历次数?

自然而然地想到的方法是二分查找,它的时间复杂度 log2(n) 。但这个算法有前提,需要依赖有序序列。

于是,第一个要我们解决的问题是使序列有序,Go 的标准库已经提供了这个功能,在 sort 包下。

示例代码如下:

fmt.Println(sort.SortInts([]int{4, 2, 5, 1, 6}))

对于 []int,我们使用的函数是 SortInts,如果是其他类型切片,sort 也提供了相关的函数,比如 []string 可通过 SortStrings 排序。

完成排序就可以进行二分查找,幸运的是,这个功能 Go 也提供了,[]int 类型对应函数是 SearchInts。

简单介绍下这个函数,先看定义:

func SearchInts(a []int, x int) int

输入参数容易理解,从切片 a 中搜索 x。重点要说下返回值,这对于我们后面确认元素是否存在至关重要。返回值的含义,返回查找元素在切片中的位置,如果元素不存在,则返回,在保持切片有序情况下,插入该元素应该在什么位置。

比如,序列如下:

1 2 6 8 9 11

假设,x 为 6,查找之后将发现它的位置在索引 2 处;x 如果是 7,发现不存在该元素,如果插入序列,将会放在 6 和 8 之间,索引位置是 3,因而返回值为 3。

代码测试下:

fmt.Println(sort.SearchInts([]int{1, 2, 6, 8, 9, 11}, 6)) // 2
fmt.Println(sort.SearchInts([]int{1, 2, 6, 8, 9, 11}, 7)) // 3

如果判断元素是否在序列中,只要判断返回位置上的值是否和查找的值相同即可。

但还有另外一种情况,如果插入元素位于序列最后,例如元素值为 12,插入位置即为序列的长度 6。如果直接查找 6 位置上的元素就可能发生越界的情况。那怎么办呢?其实判断返回是否小于切片长度即可,小于则说明元素在切片序列中。

完整的实现代码如下:

func SortInIntSlice(haystack []int, needle int) bool {
	sort.Ints(haystack)

	index := sort.SearchInts(haystack, needle)
	return index < len(haystack) && haystack[index] == needle
}

但这还有个问题,对于无序的场景,如果每次查询都要经过一次排序并不划算。最好能实现一次排序,稍微修改下代码。

func InIntSliceSortedFunc(haystack []int) func(int) bool {
	sort.Ints(haystack)

	return func(needle int) bool {
		index := sort.SearchInts(haystack, needle)
		return index < len(haystack) && haystack[index] == needle
	}
}

上面的实现,我们通过调用 InIntSliceSortedFunc 对 haystack 切片排序,并返回一个可多次使用的函数。

使用案例如下:

in := gotin.InIntSliceSortedFunc(haystack)

for i := 0; i<maxNeedle; i++ {
	if in(i) {
		fmt.Printf("%d is in %v", i, haystack)
	}
}

二分查找的方式有什么不足呢?

我想到的重要一点,要实现二分查找,元素必须是可排序的,如 int,string,float 类型。而对于结构体、切片、数组、映射等类型,使用起来就不是那么方便,当然,如果要用,也是可以的,不过需要我们进行一些适当扩展,按指定标准排序,比如结构的某个成员。

到此,二分查找的 in 实现就介绍完毕了。

map key

本节介绍 map key 方式。它的算法复杂度是 O1,无论数据量多大,查询性能始终不变。它主要依赖的是 Go 中的 map 数据类型,通过 hash map 直接检查 key 是否存在,算法大家应该都比较熟悉,通过 key 可直接映射到索引位置。

我们常会用到这个方法。

_, ok := m[k]
if ok {
	fmt.Println("Found")
}

那么它和 in 如何结合呢?一个案例就说明白了这个问题。

假设,我们有一个 []int 类型变量,如下:

s := []int{1, 2, 3}

为了使用 map 的能力检查某个元素是否存在,可以将 s 转化 map[int]struct{}。

m := map[interface{}]struct{}{
	1: struct{}{},
	2: struct{}{},
	3: struct{}{},
	4: struct{}{},
}

如果检查某个元素是否存在,只需要通过如下写法即可确定:

k := 4
if _, ok := m[k]; ok {
	fmt.Printf("%d is found\n", k)
}

是不是非常简单?

补充一点,关于这里为什么使用 struct{},可以阅读我之前写的一篇关于 Go 中如何使用 set 的文章。

按照这个思路,实现函数如下:

func MapKeyInIntSlice(haystack []int, needle int) bool {
	set := make(map[int]struct{})

	for _ , e := range haystack {
		set[e] = struct{}{}
	}

	_, ok := set[needle]
	return ok
}

实现起来不难,但和二分查找有着同样的问题,开始要做数据处理,将 slice 转化为 map。如果是每次数据相同,稍微修改下它的实现。

func InIntSliceMapKeyFunc(haystack []int) func(int) bool {
	set := make(map[int]struct{})

	for _ , e := range haystack {
		set[e] = struct{}{}
	}

	return func(needle int) bool {
		_, ok := set[needle]
		return ok
	}
}

对于相同的数据,它会返回一个可多次使用的 in 函数,一个使用案例如下:

in := gotin.InIntSliceMapKeyFunc(haystack)

for i := 0; i<maxNeedle; i++ {
	if in(i) {
		fmt.Printf("%d is in %v", i, haystack)
	}
}

对比前两种算法,这种方式的处理效率最高,非常适合于大数据的处理。接下来的性能测试,我们将会看到效果。

性能

介绍完所有方式,我们来实际对比下每种算法的性能。测试源码位于 gotin_test.go 文件中。

基准测试主要是从数据量大小考察不同算法的性能,本文中选择了三个量级的测试样本数据,分别是 10、1000、1000000。

为便于测试,首先定义了一个用于生成 haystack 和 needle 样本数据的函数。

代码如下:

func randomHaystackAndNeedle(size int) ([]int, int){
	haystack := make([]int, size)

	for i := 0; i<size ; i++{
		haystack[i] = rand.Int()
	}

	return haystack, rand.Int()
}

输入参数是 size,通过 rand.Int() 随机生成切片大小为 size 的 haystack 和 1 个 needle。在基准测试用例中,引入这个随机函数生成数据即可。

举个例子,如下:

func BenchmarkIn_10(b *testing.B) {
	haystack, needle := randomHaystackAndNeedle(10)

	b.ResetTimer()
	for i := 0; i < b.N; i++ {
		_, _ = gotin.In(haystack, needle)
	}
}

首先,通过 randomHaystackAndNeedle 随机生成了一个含有 10 个元素的切片。因为生成样本数据的时间不应该计入到基准测试中,我们使用 b.ResetTimer() 重置了时间。

其次,压测函数是按照 Test+函数名+样本数据量 规则编写,如案例中 BenchmarkIn_10,表示测试 In 函数,样本数据量为 10。如果我们要用 1000 数据量测试 InIntSlice,压测函数名为 BenchmarkInIntSlice_1000。

测试开始吧!简单说下我的笔记本配置,Mac Pro 15 版,16G 内存,512 SSD,4 核 8 线程的 CPU。

测试所有函数在数据量在 10 的情况下的表现。

$ go test -run=none -bench=10$ -benchmem

匹配所有以 10 结尾的压测函数。

测试结果:

goos: darwin
goarch: amd64
pkg: github.com/poloxue/gotin
BenchmarkIn_10-8                         3000000               501 ns/op             112 B/op         11 allocs/op
BenchmarkInIntSlice_10-8                200000000                7.47 ns/op            0 B/op          0 allocs/op
BenchmarkInIntSliceSortedFunc_10-8      100000000               22.3 ns/op             0 B/op          0 allocs/op
BenchmarkSortInIntSlice_10-8            10000000               162 ns/op              32 B/op          1 allocs/op
BenchmarkInIntSliceMapKeyFunc_10-8      100000000               17.7 ns/op             0 B/op          0 allocs/op
BenchmarkMapKeyInIntSlice_10-8           3000000               513 ns/op             163 B/op          1 allocs/op
PASS
ok      github.com/poloxue/gotin        13.162s

表现最好的并非 SortedFunc 和 MapKeyFunc,而是最简单的针对单类型的遍历查询,平均耗时 7.47ns/op,当然,另外两种方式表现也不错,分别是 22.3ns/op 和 17.7ns/op。

表现最差的是 In、SortIn(每次重复排序) 和 MapKeyIn(每次重复创建 map)两种方式,平均耗时分别为 501ns/op 和 513ns/op。

测试所有函数在数据量在 1000 的情况下的表现。

$ go test -run=none -bench=1000$ -benchmem

测试结果:

goos: darwin
goarch: amd64
pkg: github.com/poloxue/gotin
BenchmarkIn_1000-8                         30000             45074 ns/op            8032 B/op       1001 allocs/op
BenchmarkInIntSlice_1000-8               5000000               313 ns/op               0 B/op          0 allocs/op
BenchmarkInIntSliceSortedFunc_1000-8    30000000                44.0 ns/op             0 B/op          0 allocs/op
BenchmarkSortInIntSlice_1000-8             20000             65401 ns/op              32 B/op          1 allocs/op
BenchmarkInIntSliceMapKeyFunc_1000-8    100000000               17.6 ns/op             0 B/op          0 allocs/op
BenchmarkMapKeyInIntSlice_1000-8           20000             82761 ns/op           47798 B/op         65 allocs/op
PASS
ok      github.com/poloxue/gotin        11.312s

表现前三依然是 InIntSlice、InIntSliceSortedFunc 和 InIntSliceMapKeyFunc,但这次顺序发生了变化,MapKeyFunc 表现最好,17.6 ns/op,与数据量 10 的时候相比基本无变化。再次验证了前文的说法。

同样的,数据量 1000000 的时候。

$ go test -run=none -bench=1000000$ -benchmem

测试结果如下:

goos: darwin
goarch: amd64
pkg: github.com/poloxue/gotin
BenchmarkIn_1000000-8                                 30          46099678 ns/op         8000098 B/op    1000001 allocs/op
BenchmarkInIntSlice_1000000-8                       3000            424623 ns/op               0 B/op          0 allocs/op
BenchmarkInIntSliceSortedFunc_1000000-8         20000000                72.8 ns/op             0 B/op          0 allocs/op
BenchmarkSortInIntSlice_1000000-8                     10         138873420 ns/op              32 B/op          1 allocs/op
BenchmarkInIntSliceMapKeyFunc_1000000-8         100000000               16.5 ns/op             0 B/op          0 allocs/op
BenchmarkMapKeyInIntSlice_1000000-8                   10         156215889 ns/op        49824225 B/op      38313 allocs/op
PASS
ok      github.com/poloxue/gotin        15.178s

MapKeyFunc 依然表现最好,每次操作用时 17.2 ns,Sort 次之,而 InIntSlice 呈现线性增加的趋势。一般情况下,如果不是对性能要特殊要求,数据量特别大的场景,针对单类型的遍历已经有非常好的性能了。

从测试结果可以看出,反射实现的通用 In 函数每次执行需要进行大量的内存分配,方便的同时,也是以牺牲性能为代价的。

总结

本文通过一个问题引出主题,为什么 Go 中没有类似 Python 的 In 方法。我认为,一方面是实现非常简单,没有必要。除此以外,另一方面,在不同场景下,我们还需要根据实际情况分析用哪种方式实现,而不是一种固定的方式。

接着,我们介绍了 In 实现的三种方式,并分析了各自的优劣。通过性能分析测试,我们能得出大致的结论,什么方式适合什么场景,但总体还是不能说足够细致,有兴趣的朋友可以继续研究下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/331873.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

强化学习与监督学习【区别】

强化学习很强大&#xff0c;但是有大多数场景毫无使用它的必要&#xff0c;监督学习就够了。下面分析强化学习和监督学习的区别和强化学习有前景的应用。 目录 决策是否改变环境当前奖励还是长线回报总结 决策是否改变环境 监督学习假设模型的决策不会影响环境&#xff0c;而强…

CSS笔记II

CSS第二天笔记 复合选择器后代选择器子选择器并集选择器交集选择器伪类选择器 三大特性继承性层叠性优先级优先级-叠加计算规则 Emmet写法 背景属性背景图平铺方式位置缩放固定复合属性 显示模式转换显示模式 复合选择器 定义&#xff1a;由两个或多个基础选择器&#xff0c;通…

django电影推荐系统

电影推荐 启动 ./bin/pycharm.shdjango-admin startproject movie_recommendation_projectcd movie_recommendation_project/python manage.py movie_recommendation_apppython manage.py startapp movle_recommendation_applspython manage.py runserver Using the URLconf d…

vue3自定义按钮点击变颜色实现(多选功能)

实现效果图&#xff1a; 默认选中第一个按钮&#xff0c;未选中按钮为粉色&#xff0c;点击时颜色变为红色 利用动态类名&#xff0c;当定义isChange数值和下标index相同时&#xff0c;赋予act类名&#xff0c;实现变色效果 <template><div class"page"&…

Python-基础篇-类与对象/面向对象程序设计

文章目录 思维导图是何物类定义类&#x1f4da; class类的成员&#x1f4da;类的继承性&#x1f4da;封装性&#x1f4da;多态性 对象面向对象&#x1f4da;创建对象&#x1f4da;销毁对象&#x1f4da; 类和对象关系必背必记专业英语学习角 思维导图 是何物 类 “类”是物以…

基于面向对象的,C++实现二叉搜索树的一系列操作

1.树 树是由节点和边组成的一种可以表示数据的层次结构 根节点&#xff1a;树的最顶端的节点 叶节点&#xff1a;树的最底层的节点 子节点&#xff1a;通过边相连的位于下层的为子节点 父节点&#xff1a;通过边相连的位于上层的为父节点 层次&#xff1a;一个节点到根节点的距…

HashMap学习和线程安全的HashMap

HashMap的底层数据结构&#xff1f; HashMap在JDK1.8里面的Node数组加链表加红黑树&#xff0c;当链表长度大于8且数组长度大于64&#xff0c;链表转化为红黑树。当红黑树节点数小于6&#xff0c;红黑树转化为链表。在JDK1.7中是数组加链表。 为什么要用红黑树&#xff1f; 当…

【C语言】- 设置控制台文字颜色、大小和字体

【C语言】- 设置控制台标题、编码、文字颜色、大小和字体 文章目录 【C语言】- 设置控制台标题、编码、文字颜色、大小和字体1 - 设置控制台标题2 - 设置控制台编码3 - 设置控制台字体和大小参考链接 1 - 设置控制台标题 因为要用到 Windows API&#xff0c;所以需要包含头文件…

hub汉语有轮毂的意思吗?

问题描述&#xff1a;hub汉语有轮毂的意思吗&#xff1f; 问题解答&#xff1a; 是的&#xff0c;"hub"&#xff08;中文翻译为"轮毂"&#xff09;是指机械装置中的一个中心部分&#xff0c;通常用于连接或支持其他部分。在车辆的轮胎系统中&#xff0c;…

算法学习系列(二十四):二分图

目录 引言一、二分图二、染色法三、匈牙利算法 引言 这个二分图作为平常我是不怎么知道的&#xff0c;但是在算法竞赛中还是能用得到的。本文主要介绍了染色法&#xff1a;用来判断如否为二分图&#xff0c;匈牙利算法&#xff1a;求出二分图最大匹配数。 一、二分图 二分图…

【Linux】权限的深度解析

前言&#xff1a;在此之前我们学习了一些常用的Linux指令&#xff0c;今天我们进一步学习Linux下权限的一些概念 &#x1f496; 博主CSDN主页:卫卫卫的个人主页 &#x1f49e; &#x1f449; 专栏分类:Linux的学习 &#x1f448; &#x1f4af;代码仓库:卫卫周大胖的学习日记&a…

全流程机器视觉工程开发(一)环境准备,paddledetection和labelme

前言 我现在在准备做一个全流程的机器视觉的工程&#xff0c;之前做了很多理论相关的工作。大概理解了机器视觉的原理&#xff0c;然后大概了解了一下&#xff0c;我发现现在的库其实已经很发展了&#xff0c;完全不需要用到非常多的理论&#xff0c;只需要知道开发过程就可以…

HFSS笔记/信号完整性分析(一)——常用快捷键+建模技巧

文章目录 1、常用快捷键2、常用建模技巧2.1 如何由一个无厚度的sheet生成一个有厚度的2.2 如何绘制T形截面的传输线&#xff1f;2.3 自动建立辐射边界法一、法二、 仅做笔记整理与分享。 1、常用快捷键 快捷键功能CtrlDfit it all 以合适的尺寸至于窗口中间CtrlH隐藏object或者…

【XTuner 大模型单卡低成本微调实战】学习笔记

参考学习教程【XTuner 大模型单卡低成本微调实战】 理论 Finetune简介 大语言模型 微调模式 增量预训练 指令跟随微调 LoRA和QLoRA Xtuner介绍 实战 自定义微调 用 Medication QA 数据集进行微调 将数据转为 XTuner 的数据格式 目标格式&#xff1a;(.jsonL) 写提示词请C…

算法练习-A+B/财务管理/实现四舍五入/牛牛的菱形字符(题目链接+题解打卡)

难度参考 难度&#xff1a;简单 分类&#xff1a;熟悉OJ与IDE的操作 难度与分类由我所参与的培训课程提供&#xff0c;但需要注意的是&#xff0c;难度与分类仅供参考。以下内容均为个人笔记&#xff0c;旨在督促自己认真学习。 题目 A B1. A B - AcWing题库财务管理1004:财…

C语言学习之字典(单词拆分)

实例要求&#xff1a; 1、给定字符串以及字符串列表作为字典&#xff1b; 2、判断是否可以利用字典中出现的单词拼接出字符串&#xff1b; 3、不要求字典中出现的单词全部都使用&#xff1b; 4、字典中的单词可以重复使用&#xff1b; 实例分析&#xff1a; 1、初始化数组…

对java的interface的理解

一个例子来让我们理解更加深刻 这是我们的整体文件布局 ①A是接口 ②B和C是用来实现接口的类 ③show是我们的运行函数&#xff0c;用来展示 A接口 接口中定义的方法可以不用去实现,用其他类去实现(必须实现) 关键字:interface public interface A { // public static …

Android Activity的启动流程(Android-10)

前言 在Android开发中&#xff0c;我们经常会用到startActivity(Intent)方法&#xff0c;但是你知道startActivity(Intent)后Activity的启动流程吗&#xff1f;今天就专门讲一下最基础的startActivity(Intent)看一下Activity的启动流程&#xff0c;同时由于Launcher的启动后续…

JavaEE学习笔记 2024-1-12 --Tomcat服务器、Servlet

JavaEE 个人整理非商业用途&#xff0c;欢迎探讨与指正&#xff01;&#xff01; JavaEE是企业级开发 是综合性非常强的阶段  包含的知识点:JavaSE,MySQL,JDBC,WEB(HTML,CSS,JS,前端框架),Servlet,JSP,XML,AJAX等技术 目录 JavaEE1.服务器2.Tomcat服务器2.1Tomcat的使用2.2Tom…

【驱动】I2C驱动分析(二)-驱动框架

I2C驱动框架简介 I2C 驱动属于总线-设备-驱动模型的&#xff0c;与I2C总线设备驱动模型相比&#xff0c;大体框架是一样&#xff0c;系统的整体框架如下所示。 最上层是应用层&#xff0c;在应用层用户可以直接用open read write对设备进行操作&#xff0c;往下是设备驱动层&a…