区间预测 | Matlab实现GRU-Adaboost-ABKDE的集成门控循环单元自适应带宽核密度估计多变量回归区间预测

区间预测 | Matlab实现GRU-Adaboost-ABKDE的集成门控循环单元自适应带宽核密度估计多变量回归区间预测

目录

    • 区间预测 | Matlab实现GRU-Adaboost-ABKDE的集成门控循环单元自适应带宽核密度估计多变量回归区间预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现GRU-Adaboost-ABKDE的集成门控循环单元自适应带宽核密度估计多变量回归区间预测(完整源码和数据)
2.GRU-Adaboost-ABKDE的集成门控循环单元自适应带宽核密度估计多变量回归区间预测(点预测+概率预测+核密度估计) Matlab语言
3.多变量单输出,包括点预测+概率预测+核密度估计曲线,MatlabR2021a及以上版本运行,提供多种置信区间!评价指标包括R2、MAE、RMSE、MAPE、区间覆盖率picp、区间平均宽度百分比pinaw等。
4.算法新颖,对固定带宽核函数进行了改进。
5.直接替换Excel数据即可用,注释清晰,适合新手小白,直接运行main文件一键出图。
6.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现GRU-Adaboost-ABKDE的集成门控循环单元自适应带宽核密度估计多变量回归区间预测

%%  数据反归一化
T_sim1 = mapminmax('reverse', T_sim1, ps_output);
T_sim2 = mapminmax('reverse', T_sim2, ps_output);

%% *区间预测* (基于KDE)
z = [0.975;0.95;0.875;0.75;0.625;0.55;0.525]; %分位数

%% *值评估指标*
[Error] = PlotError(T_sim1,T_train,N,'#3D59AB');

%% *自适应带宽核密度估计
figure;
[y,t,optim_width,~,~,confb95] = ABKDE(Error);
hold on
window=fill([t,fliplr(t)],[confb95(1,:),fliplr(confb95(2,:))],[7 7 7]/8,'FaceAlpha',0.5);
window.EdgeColor = 'none';
plot(t,confb95(1,:),'Color',[7 7 7]/9,'LineWidth',1);
plot(t,confb95(2,:),'Color',[7 7 7]/9,'LineWidth',1);
plot(t,y,'Color',[0.9 0.2 0.2],'LineWidth',2);
[f0,xi0] = ksdensity(Error,'Function','pdf');
plot(xi0,f0,'LineWidth',1.5,'Color',"#7E2F8E");
xlim([min(t) max(t)]);
legend({'95%置信核密度估计曲线','','','优化自适应带宽核密度估计曲线','未优化固定带宽核密度估计曲线'});
grid on;
ylabel('概率密度');
xlabel('预测误差');
set(gca,'TickDir','out'); 
set(gcf,'color','w')

for m = 1:length(z)
    Q1(m) = QuantSol_FUN(t,y,1-z(m));         %  下界
    Q2(m) = QuantSol_FUN(t,y,z(m));           %  上界
end

for m = 1:length(z)
    Lower(:,m) = T_sim2 + Q1(m);
    Upper(:,m) = T_sim2 + Q2(m);
end

%% *绘图*
PlotProbability(T_sim2,T_test,numel(T_test),Lower,Upper,0,N,[0 100 0]/255); %概率绘图

%% *核密度估计*
time_index = [25;50;75;100]; %确定采样点,注意元素不要超过预测样本的个数!!
num_KD = numel(time_index);
PlotKernelDensity(Lower,Upper,time_index,T_test',num_KD);
set(gcf,'color','w')

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/330884.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode:128. 最长连续序列

128. 最长连续序列 乍一看感觉很简单,一看要用O(n)??? 因为我觉得题目很难而且题目看起来很简单,感觉以后会用到😆,做个记录 1.朴素做法 思路 答:任何一段连续的数都有一个左端点:比如(1,…

【树莓派】网线远程连接电脑和树莓派,实现SSH连接

目录 1、硬件连接; 2、电脑端: 3、查找树莓派的IP地址 4、开启树莓派的SSH接口 5、putty 6、命令行 参考文章 通过网线连接笔记本与树莓派 开启SSH和VNC功能 无显示器安装树莓派 实现:打开putty输入树莓派地址使用ssh方式登陆&…

Docker与Docker Compose入门:释放你的应用部署的威力

嘿,大家好!今天给大家介绍一项强大而有趣的技能,那就是使用 Docker 和 Docker Compose 来释放你的应用部署的威力!无论你是一名开发人员还是系统管理员,掌握这个技能都将为你的工作带来巨大的好处。 本文大纲如下&…

线程安全的集合类

Java中提供了许多集合类,其中有的是线程安全的,有的是线程不安全的。线程安全的集合类有: 1. Vector:Vector类实现了一个动态数组,与ArrayList相似,但Vector是同步访问的 2. Stack:Stack是Vec…

代码随想录 28. 找出字符串中第一个匹配项的下标(KMP算法)

题目&#xff1a; 代码&#xff08;首刷自解 暴力 2024年1月18日&#xff09;&#xff1a; class Solution { public:int strStr(string haystack, string needle) {int n haystack.size();int nstr 0;for (int i 0; i < n; i) {if (haystack[i] needle[0]) {int hstr …

Spring boot项目java bean和xml互转

Spring boot项目实现java bean和xml互转 项目场景&#xff1a;互转方法使用jackson进行互转使用jaxws进行xml与bean的互转 搞定收工&#xff01; 项目场景&#xff1a; 工作中需要给下游第三方收费系统做数据挡板&#xff0c;由于下游系统使用的是soap webservice,里面涉及各种…

Django笔记(一):环境部署

目录 Python虚拟环境 安装virtualenv 创建环境 激活环境 关闭&#xff1a; 安装Django VSCode配置 Python插件 Django插件 解释器选择 Django部署 创建项目 创建app 创建模板 编写视图 编写路由 启动服务器 访问 Python虚拟环境 安装virtualenv pip i…

低代码助力制造业数智转型,激发创新力迎接工业 4.0

随着科技的不断进步&#xff0c;我们迈入了一个崭新的工业时代——工业4.0。这场工业革命不仅颠覆了制造业的传统形象&#xff0c;还为全球生产方式带来了前所未有的变革。 在这一过程中&#xff0c;制造业数字化转型逐渐成为主旋律&#xff0c;而低代码技术在这其中发挥着重要…

网上订货管理系统功能列表|企业手机订单管理软件

网上订货管理系统功能列表|企业手机订单管理软件 后台功能列表 &#xff08;后台支持手机版本 订货APP,管理订单的APP&#xff09; 后台登陆 输入账号密码登录企业订货管理软件系统 后台首页 显示近日,月,年订单统计&#xff0c;和收款欠款等统计。 订单模块 新建订单 &am…

Java:选择哪个Java IDE好?

Java&#xff1a;选择哪个Java IDE好? 在开始前我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「java的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共享给大家&#xff01;&#xff01;&…

空气制水机市场调研:预计2029年将达到5.2亿美元

空气制水机&#xff0c;是一种通过高效过滤空气中的水分子冷凝成为液态水&#xff0c;再通过一系列净化处理方法生产出高品质饮用水的设备。也就是说&#xff0c;它靠空气温度和湿度驱动取水&#xff0c;经过几层空气过滤和水路过滤&#xff0c;制造出安全健康的直饮水&#xf…

电力能源三维可视化合集 | 图扑数字孪生

电力能源是现代社会发展和运行的基石&#xff0c;渗透于工业、商业、农业、家庭生活等方方面面&#xff0c;它为经济、生活质量、环境保护和社会发展提供了巨大的机会和潜力。图扑软件应用自研 HT for Web 强大的渲染引擎&#xff0c;助力现代化的电力能源数字孪生场景&#xf…

RHCE9学习指南 第22章 用rpm管理软件

rpm全称是redhat package manager&#xff0c;后来改成rpm package manager&#xff0c;这是根据源码包编译出来的包。先从光盘中拷贝一个包&#xff0c;并看他是如何命名的。 先挂载光盘&#xff0c;然后拷贝vsftpd这个包&#xff0c;命令如下。 [rootserver ~]# mount /dev/…

如何绘制出图像的色素分布直方图

效果 如图&#xff0c;可以展示出我们的图像的颜色分布直方图,表明的图像的亮和暗 实现可视化色素分布直方图方法 这里我们对我们的灰色图片和彩色图片进行了直方图显示 import cv2 import matplotlib.pyplot as plt image cv2.imread("test.jpg") # 彩色图片->…

【leetcode 2171. 拿出最少数目的魔法豆】没有数学,全是思路

2171. 拿出最少数目的魔法豆 题目描述 给定一个 正整数 数组 beans &#xff0c;其中每个整数表示一个袋子里装的魔法豆的数目。 请你从每个袋子中 拿出 一些豆子&#xff08;也可以 不拿出&#xff09;&#xff0c;使得剩下的 非空 袋子中&#xff08;即 至少还有一颗 魔法豆…

鼠害监测站的意义是什么

鼠害监测站是专门用于监测鼠害发生情况、种群结构和危害程度的设施。这些站点通常设立在农田、森林、草原等鼠害易发区域&#xff0c;通过定期调查和监测&#xff0c;收集鼠害相关信息&#xff0c;为防治工作提供科学依据。 TH-SH1 鼠害监测站的意义 保障农业生产&#xff1a;…

精品基于Uniapp+springboot美食菜谱类管理系统APP

《[含文档PPT源码等]精品基于Uniappspringboot美食类管理系统APP》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程、包运行成功&#xff01; 软件开发环境及开发工具&#xff1a; 开发语言&#xff1a;Java 后台框架&#xff1a;springboot、ssm 安…

SpringBoot中整合MybatisPlus快速实现Mysql增删改查和条件构造器

场景 Mybatis-Plus(简称MP)是一个Mybatis的增强工具&#xff0c;只是在Mybatis的基础上做了增强却不做改变&#xff0c;MyBatis-Plus支持所有Mybatis原生的特性&#xff0c; 所以引入Mybatis-Plus不会对现有的Mybatis构架产生任何影响。MyBatis 增强工具包&#xff0c;简化 C…

掌握退款与测评自养号技术,在亚马逊、沃尔玛上轻松做卖家

今天&#xff0c;我想与大家分享在亚马逊、沃尔玛退款自养号中的一些经验。众所周知&#xff0c;自养号的环境是至关重要的&#xff0c;它涉及到系统的纯净度、下单所用的信用卡以及许多其他细节。一个良好的养号环境能够确保账号的安全与稳定&#xff0c;进而提高退款成功率。…

2023年暴涨130%后,嘉年华游轮股价2024年还会继续暴涨吗?

来源&#xff1a;猛兽财经 作者&#xff1a;猛兽财经 2023年对嘉年华游轮来说的标志性的一年 2023年&#xff0c;嘉年华游轮(CCL)的业务不但实现了全面复苏&#xff0c;而且其股价也重新回到了市场领先地位&#xff0c;全年上涨了130%&#xff0c;远远超过了标普500指数24%的涨…