python数字图像处理基础(五)——Canny边缘检测、图像金字塔、图像分割

目录

    • Canny边缘检测
      • 原理步骤
    • 图像金字塔
      • 1.高斯金字塔
      • 2.拉普拉斯金字塔
    • 图像分割
    • 图像轮廓检测
      • 1.检测轮廓
      • 2.绘制轮廓
      • 3.补充

Canny边缘检测

梯度是什么?

梯度就是变化的最快的那个方向

edge = cv2.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient ]]])

  • 第一个参数是需要处理的原图像,该图像必须为单通道的灰度图;
  • 第二个参数是阈值1;
  • 第三个参数是阈值2。

原理步骤

1)使用高斯滤波器,以平滑图像,滤除噪声
2)计算图像中每个像素点的梯度强度和方向
3)应用非极大值(Non-Maximum Suppression)抑制,以消除边缘检测带来的杂散响应
4)应用双阈值检测来确定真实和潜在的边缘
5)通过抑制孤立的弱边缘最终完成边缘检测

img = cv2.imread("car.png", cv2.IMREAD_GRAYSCALE)
v = cv2.Canny(img, 120, 250)

注:120,250为两个梯度值(阈值)。大于250的处理为边界;
介于120到250的,若是连有边界(大于250)的,也认为是边界,保留,否则舍弃;
小于120的,舍弃

Canny 的目标是找到一个最优的边缘检测算法,最优边缘检测的含义是:

  1. 最优检测:算法能够尽可能多地标识出图像中的实际边缘,漏检真实边缘的概率和误检非边缘的概率都尽可能小;

  2. 最优定位准则:检测到的边缘点的位置距离实际边缘点的位置最近,或者是由于噪声影响引起检测出的边缘偏离物体的真实边缘的程度最小;

  3. 检测点与边缘点一一对应:算子检测的边缘点与实际边缘点应该是一一对应

Canny边缘检测算法可以分为以下5个步骤:

  1. 应用高斯滤波来平滑图像,目的是去除噪声
  2. 找寻图像的强度梯度(intensity gradients)
  3. 应用非最大抑制(non-maximum suppression)技术来消除边误检(本来不是但检测出来是)
  4. 应用双阈值的方法来决定可能的(潜在的)边界
  5. 利用滞后技术来跟踪边界
  • 这里提供一个示例:
import cv2
import numpy as np

# 读取图像
img = cv2.imread("./image/car1.jpg")

# 将图像转为灰度
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 使用Canny边缘检测
edges = cv2.Canny(gray, 120, 250)

# 寻找轮廓
contours, hierarchy = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# 绘制轮廓
contour_img = np.zeros_like(img)
cv2.drawContours(contour_img, contours, -1, (0, 255, 0), 2)

# 显示原始图像、Canny边缘检测结果和带有轮廓的图像
cv2.imshow("Original Image", img)
cv2.imshow("Canny Edges", edges)
cv2.imshow("Contours", contour_img)

cv2.waitKey(0)
cv2.destroyAllWindows()

结果如下:
在这里插入图片描述
在这里插入图片描述

这个例子演示了以下步骤:

将彩色图像转换为灰度图像。
使用Canny边缘检测来获取图像边缘。
寻找轮廓,并将它们存储在contours中。
创建一个全黑图像,然后使用cv2.drawContours()将轮廓绘制在这个图像上。
最后,通过cv2.imshow()显示原始图像、Canny边缘检测结果和带有轮廓的图像。


图像金字塔

图像金字塔是图像多尺度表达的一种,是一种以多分辨率来解释图像的有效但概念简单的结构。
一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。
其通过梯次向下采样获得,直到达到某个终止条件才停止采样。
我们将一层一层的图像比喻成金字塔,层级越高,则图像越小,分辨率越低。

从上面对图像金字塔的定义来看,图像金字塔的功能之一就是对图像尺度尺度的转换,
即放大或者缩小图片,在OpenCV中提供了两种方法:

cv2.resize() 这种方法可直接对图像进行尺度的变换
cv2.pyrUp() 对图像的向上采样操作
cv2.pyrDown() 对图像的向下采样操作

1.高斯金字塔

用来向下采样,是主要的图像金字塔
注:这里的向下,是指大图到小图,对应到金字塔实际上是从底层大的到顶端小的

img = cv2.imread('luotuo.jpg', 0) # 读为灰度图
up_img = cv2.pyrUp(img) # 上采样操作
img_1 = cv2.pyrDown(img) # 下采样操作

这里的向下与向上采样是对图像的尺度来说的 ,
相当于倒立的金字塔,向上就是图像尺寸加倍,向下就是图像尺寸减半。

需要注意的是,pyrUp和pyrDown不是互逆的,即上采样不是下采样的逆操作。

pyrDown()是一个会丢失信息的函数。为了恢复原来更高分辨率的图像,
要获得由于下采样操作所丢失的信息,这些数据就和拉普拉斯金字塔有关了。

2.拉普拉斯金字塔

拉普拉斯金字塔是图像金字塔中的一种,它主要用于图像的向上采样。拉普拉斯金字塔的构建与高斯金字塔密切相关,它表示原始图像和该图像在不同尺度上的逼近之间的差异。

拉普拉斯金字塔的构建步骤如下:

  1. 构建高斯金字塔。
  2. 对于每一层高斯金字塔,通过减去其上一层高斯金字塔的上采样版本,得到拉普拉斯金字塔。

在这里,我们可以通过下面的步骤演示拉普拉斯金字塔的构建:

import cv2
import numpy as np

# 读取图像
img = cv2.imread('luotuo.jpg')

# 构建高斯金字塔
gaussian_pyramid = [img]
for i in range(6):
    img = cv2.pyrDown(img)
    gaussian_pyramid.append(img)

# 构建拉普拉斯金字塔
laplacian_pyramid = [gaussian_pyramid[5]]
for i in range(5, 0, -1):
    gaussian_expanded = cv2.pyrUp(gaussian_pyramid[i])
    laplacian = cv2.subtract(gaussian_pyramid[i - 1], gaussian_expanded)
    laplacian_pyramid.append(laplacian)

# 显示原始图像和金字塔图像
cv2.imshow('Original Image', img)
cv2.waitKey(0)

for i in range(6):
    cv2.imshow(f'Gaussian Pyramid Layer {i}', gaussian_pyramid[i])
    cv2.waitKey(0)

for i in range(6):
    cv2.imshow(f'Laplacian Pyramid Layer {i}', laplacian_pyramid[i])
    cv2.waitKey(0)

cv2.destroyAllWindows()

在上述代码中,我们首先构建了高斯金字塔,然后通过对高斯金字塔进行操作得到拉普拉斯金字塔。最后,我们分别显示了原始图像、高斯金字塔图像和拉普拉斯金字塔图像的不同层次。


图像分割

所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的说就是在一副图像中,把目标从背景中分离出来。
一般来说,用于图像分割的算法主要有五类:

第一种是阈值分割方法( threshold segmentation method)。

阈值分割是基于区域的分割算法中最常用的分割技术之一,其实质是根据一定的标准自动确定最佳阈值,并根据灰度级使用这些像素来实现聚类。**优缺点:**计算简单,效率较高;只考虑像素点灰度值本身的特征,一般不考虑空间特征,因此对噪声比较敏感,鲁棒性不高。

其次是区域增长细分( regional growth segmentation)。

区域增长算法的基本思想是将具有相似属性的像素组合以形成区域,即,首先划分每个区域以找到种子像素作为生长点,然后将周围邻域与相似属性合并其区域中的像素。**优缺点:**对复杂图像分割效果好;但是算法复杂,计算量大;分裂有可能破坏区域的边界。

第三种是边缘检测分割方法( edge detection segmentation method)。

边缘检测分割算法是指利用不同区域的像素灰度或边缘的颜色不连续检测区域,以实现图像分割。边缘检测技术通常可以按照处理的技术分为串行边缘检测和并行边缘检测。串行边缘检测是要想确定当前像素点是否属于检测边缘上的一点,取决于先前像素的验证结果。并行边缘检测是一个像素点是否属于检测边缘高尚的一点取决于当前正在检测的像素点以及与该像素点的一些临近像素点。
**优缺点:**边缘定位准确;速度快;但是不能保证边缘的连续性和封闭性;在高细节区域存在大量的碎边缘,难以形成一个大区域,但是又不宜将高细节区域分成小碎片;

第四种是基于聚类的分割( segmentation based on clustering)。

基于聚类的算法是基于事物之间的相似性作为类划分的标准,即根据样本集的内部结构将其划分为若干子类,以使相同类型的类尽可能相似、不同的类型的类尽可能不相似。同一聚类中的点使用相同颜色标记,不同聚类颜色不同。
优缺点 :传统 FCM 算法没有考虑空间信息,对噪声和灰度不均匀敏感。

最后是基于CNN中弱监督学习的分割

它指的是为图像中的每个像素分配语义标签的问题,又称语义分割。它由三部分组成。 1)给出包含哪些对象的图像。 2)给出一个对象的边框。 3)图像中的对象区域用部分像素标记。
**优缺点:**解决图像中的噪声和不均匀问题。可以用于抑制噪声、特性提取、边缘检测、图像分割等图像处理问题,处理灰度图像;选择何种网络结构是这种方法要解决的主要问题。需要大量数据,速度非常慢,结构复杂,分割精度与数据量有关。


图像轮廓检测

1.检测轮廓

cv2.findContours(img,mode,method)

其中,

  • mode 轮廓检索模式,有以下几种
    RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次,最常用
    RETR_EXTERNAL:只检索最外面的轮廓
    RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中
    RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界

  • method 轮廓逼近方法
    CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)
    CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分(图形的所有顶点)

返回值
cv2.findContours()函数返回两个值,一个是轮廓本身,还有一个是每条轮廓对应的属性。

  • contour返回值
    cv2.findContours()函数首先返回一个list,list中每个元素都是图像中的一个轮廓,用numpy中的ndarray表示。这个概念非常重要。在下面drawContours中会看见。可以打印观察contours的数据类型。

    print (type(contours))
    print (type(contours[0]))
    print (len(contours))

  • hierarchy返回值
    该函数还可返回一个可选的hiararchy结果,这是一个ndarray,其中的元素个数和轮廓个数相同,每个轮廓contours[i]对应4个hierarchy元素hierarchy[i] [0] ~hierarchy[i] [3],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号,如果没有对应项,则该值为负数。

2.绘制轮廓

cv2.drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[,maxLevel[, offset ]]]]])

其中:

  • 第一个参数传入所要绘制轮廓的背景图片
  • 第二个参数是轮廓本身
  • 第三个参数指定绘制轮廓中的哪条轮廓,如果是-1,则绘制其中的所有的轮廓。thickness表示的是轮廓的宽度,如果是-1(cv2.FILLED),表示为填充模式。

步骤:
先把彩图转化为灰度图
再转为二值图像(非黑即白)

3.补充

OpenCV中通过cv2.minEnclosingCircle()可以帮我们找到一个对象的外接圆。它是所有能够包括对象的圆中面积最小的一个。

(x,y),radius = cv2.minEnclosingCircle(contours[i])
center = (int(x),int(y))
radius = int(radius)
img = cv2.circle(img,center,radius,(0,255,0),2) 
  • 绘图函数cv2.line()、cv2.circle()、cv2.rectangle()、cv2.ellipse()、cv2.putText()、cv2.polylines

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/330535.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

第90讲:MySQL数据库主从复制集群原理概念以及搭建流程

文章目录 1.MySQL主从复制集群的核心概念1.1.什么是主从复制集群1.2.主从复制集群中的专业术语1.3.主从复制集群工作原理1.4.主从复制中的小细节1.5.搭建主从复制集群的前提条件1.6.MySQL主从复制集群的架构信息 2.搭建MySQL多实例环境2.1.在mysql-1中搭建身为主库的MySQL实例2…

小程序 自定义组件和生命周期

文章目录 ⾃定义组件创建⾃定义组件声明组件编辑组件注册组件 声明引⼊⾃定义组件⻚⾯中使⽤⾃定义组件定义段与⽰例⽅法组件-⾃定义组件传参过程 小程序生命周期应用生命周期页面生命周期页面生命周期 ⾃定义组件 类似vue或者react中的自定义组件 ⼩程序允许我们使⽤⾃定义组件…

设计模式的学习笔记

设计模式的学习笔记 一. 设计模式相关内容介绍 1 设计模式概述 1.1 软件设计模式的产生背景 设计模式最初并不是出现在软件设计中,而是被用于建筑领域的设计中。 1977 年美国著名建筑大师、加利福尼亚大学伯克利分校环境结构中心主任 Christopher Alexander 在…

【动态规划】【数学】【C++算法】18赛车

作者推荐 视频算法专题 本文涉及知识点 动态规划 数学 LeetCode818赛车 你的赛车可以从位置 0 开始,并且速度为 1 ,在一条无限长的数轴上行驶。赛车也可以向负方向行驶。赛车可以按照由加速指令 ‘A’ 和倒车指令 ‘R’ 组成的指令序列自动行驶。 当…

情人节专属--html5 canvas制作情人节告白爱心动画特效

💖效果展示 💖html展示 <!doctype html> <html> <head> <meta charset=

2023年移远车载全面开花,智能座舱加速进击

作为汽车智能化的关键组件&#xff0c;车载模组正发挥着越来越重要的作用。 移远通信进入车载模组领域近十年&#xff0c;已形成了完善的车载产品队列&#xff0c;不但在5G/4G车载通信、智能座舱、C-V2X车路协同等领域打造了一枝独秀的产品线&#xff0c;也推出了车规级Wi-Fi/蓝…

解决springboot启动报Failed to start bean ‘subProtocolWebSocketHandler‘;

解决springboot启动报 Failed to start bean subProtocolWebSocketHandler; nested exception is java.lang.IllegalArgumentException: No handlers 问题发现问题解决 问题发现 使用springboot整合websocket&#xff0c;启动时报错&#xff0c;示例代码&#xff1a; EnableW…

大数据时代的黄金机遇:阿里云大数据分析师ACP认证【一条龙服务100%通过】

扫码和我联系 随着大数据技术的迅速发展和广泛应用&#xff0c;成为了当今时代最具吸引力的技术之一。为了让更多技术人才把握这一时代机遇&#xff0c;阿里云推出了大数据分析师ACP认证&#xff08;Alibaba Cloud Certified Professional - Data Analyst&#xff09;&#xf…

数据结构:顺序栈

栈是一种先进后出的数据结构&#xff0c;只允许在一端&#xff08;栈顶&#xff09;操作&#xff0c;代码中top表示栈顶。 stack.h /* * 文件名称&#xff1a;stack.h * 创 建 者&#xff1a;cxy * 创建日期&#xff1a;2024年01月17日 * 描 述&#xff1a; …

LeetCode、2542. 最大子序列的分数【中等,排序+小顶堆】

文章目录 前言LeetCode、2542. 最大子序列的分数【中等&#xff0c;排序小顶堆】题目及类型思路及代码实现 资料获取 前言 博主介绍&#xff1a;✌目前全网粉丝2W&#xff0c;csdn博客专家、Java领域优质创作者&#xff0c;博客之星、阿里云平台优质作者、专注于Java后端技术领…

基于Springboot的摄影分享网站系统(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的摄影分享网站系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构…

GBASE南大通用数据库GBase BI V5支持的集群部署

GBaseBI V5可以单独部署在一个服务器上&#xff0c;在单套的情况下安装成功后不需要特殊的设置即可直接使用。某些用户的应用并发数可能很多&#xff0c;单个服务器处理请求太慢&#xff0c;GBaseBI V5支持集群和分布式部署。其中集群部署如下图所示&#xff1a; 集群部署 在集…

【Vue3】2-13 : 章节总结

本书目录&#xff1a;点击进入 一、总结内容 二、习题 2.1 【选择题】以下Vue指令中&#xff0c;哪些指令具备简写方式&#xff1f; 2.2 【编程题】以下Vue指令中&#xff0c;哪些指令具备简写方式&#xff1f; &#xff1e; 效果 &#xff1e; 代码 一、总结内容 了解核…

《WebKit 技术内幕》之三(3): WebKit 架构和模块

3 Webkit2 3.1 Webkit2 架构及模块 相比于狭义的WebKit&#xff0c;WebKit2是一套全新的结构和接口&#xff0c;而并不是一个简单的升级版。Webkit2 的思想同 Chrominum 类似&#xff0c;就是将渲染过程放在单独的进程中来完成&#xff0c;独立于用户界面。 webKit2中…

ARM 1.12

norflash与nandflash的区别&#xff1a; 一、NAND flash和NOR flash的性能比较 1、NOR的读速度比NAND稍快一些。 2、NAND的写入速度比NOR快很多。 3、NAND的4ms擦除速度远比NOR的5s快。 4、大多数写入操作需要先进行擦除操作。 5、NAND的擦除单元更小&#xff0c;相应的擦除电…

嵌入式软件工程师面试题——2025校招社招通用(二十一)

说明&#xff1a; 面试群&#xff0c;群号&#xff1a; 228447240面试题来源于网络书籍&#xff0c;公司题目以及博主原创或修改&#xff08;题目大部分来源于各种公司&#xff09;&#xff1b;文中很多题目&#xff0c;或许大家直接编译器写完&#xff0c;1分钟就出结果了。但…

Unity关于新手引导中实现遮罩镂空效果

在新手引导每一步中实现可以遮掉其他部分而显示当前需要点击的部分&#xff0c;只需要在每一步引导的时候设置对应的镂空区域的RectTransform.效果如下图&#xff1a; 代码&#xff1a; public class SelfMaskSet : MaskableGraphic, ICanvasRaycastFilter {[SerializeField]p…

企业面临哪些能源消耗问题,能源消耗监测管理系统是如何解决这些问题?

随着全球环境问题的日益严重&#xff0c;能源问题一直被世界广泛关注。在企业运营过程中&#xff0c;能源消耗问题也是一大挑战。企业在生产和运营过程中需要大量的能源支持&#xff0c;包括电、水、气、热等多种能源。由于能源价格的不稳定性&#xff0c;使得企业在能源消耗方…

数学建模--比赛

内容来自数学建模BOOM&#xff1a;【快速入门】北海&#xff1a;数模建模基础MATLAB入门论文写作数学模型与算法(推荐数模美赛国赛小白零基础必看教程)_哔哩哔哩_bilibili 目录 1.学习内容 2.参赛须知 1&#xff09;参赛作品的组成 2)参赛作品的提交 3.软件安装 4.注意…

微图Web版如何加载吉林一号影像?

曾为你分享了如何查看调用我们已购买的上海黄浦区区县图。 这里再以该图源为例&#xff0c;为你分享在水经微图&#xff08;简称“微图”&#xff09;Web版中如何加载吉林一号影像的方法。 吉林一号图源 如果你还没有吉林一号图源&#xff0c;可以从以下网址登录后免费申请。…