KNN算法原理及应用

理解KNN 算法原理

KNN是监督学习分类算法,主要解决现实生活中分类问题。

根据目标的不同将监督学习任务分为了分类学习及回归预测问题。

监督学习任务的基本流程和架构:

(1)首先准备数据,可以是视频、音频、文本、图片等等

(2)抽取所需要的一些列特征,形成特征向量(Feature Vectors)。

(3)将这些特征向量连同标记一并送入机器学习算法中,训练出一个预测模型。

(4)然后,采用同样的特征提取方法作用于新数据,得到用于测试的特征向量。

(5)最后,使用预测模型对这些待测的特征向量进行预测并得到结果(Expected Model)。

KNN(K-Nearest Neihbor,KNN)K近邻是机器学习算法中理论最简单,最好理解的算法,是一个非常适合入门的算法,拥有如下特性:

  • 思想极度简单,应用数学知识少(近乎为零),对于很多不擅长数学的小伙伴十分友好

  • 虽然算法简单,但效果也不错

如果要了解一个人的经济水平,只需要知道他最好的5个朋友的经济能力, 对他的这五个人的经济水平求平均就是这个人的经济水平。这句话里面就包含着kNN的算法思想。 

如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。

类别的判定

①投票决定,少数服从多数。取类别最多的为测试样本类别。

②加权投票法,依据计算得出距离的远近,对近邻的投票进行加权,距离越近则权重越大,设定权重为距离平方的倒数。

KNN 算法原理简单,不需要训练,属于监督学习算法,常用来解决分类问题

KNN原理:先确定K值, 再计算距离,最后挑选K个最近的邻居进行投票

 KNN的应用 

KNN即能做分类又能做回归, 还能用来做数据预处理的缺失值填充。由于KNN模型具有很好的解释性,对于每一个预测结果,我们可以很好的进行解释。文章推荐系统中, 对于一个用户A,我们可以把和A最相近的k个用户,浏览过的文章推送给A。

算法的思想:通过K个最近的已知分类的样本来判断未知样本的类别。

KNN三要素:

  • 距离度量
  • K值选择
  • 分类决策准则

 鸢尾花数据集

鸢尾花Iris Dataset数据集是机器学习领域经典数据集,鸢尾花数据集包含了150条鸢尾花信息,每50条取自三个鸢尾花中之一:Versicolour、Setosa和Virginica

from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier

iris = load_iris() #通过iris.data 获取数据集中的特征值  iris.target获取目标值
# 数据标准化
transformer = StandardScaler()
x_ = transformer.fit_transform(iris.data) # iris.data 数据的特征值

#  模型训练
estimator = KNeighborsClassifier(n_neighbors=3) # n_neighbors 邻居的数量,也就是Knn中的K值
estimator.fit(x_, iris.target) # 调用fit方法 传入特征和目标进行模型训练
# 利用模型预测
result = estimator.predict(x_)
print(result)
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1
 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 2 2 2 2
 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2]

sklearn中自带了几个学习数据集,都封装在sklearn.datasets 这个包中,加载数据后,通过data属性可以获取特征值,通过target属性可以获取目标值。

Demo数据集--kNN分类

1: 库函数导入

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.neighbors import KNeighborsClassifier
from sklearn import datasets

2: 数据导入

iris = datasets.load_iris()
X = iris.data[:, :2]
y = iris.target

3: 模型训练

k_list = [1, 3, 5, 8, 10, 15]
h = .02
# 创建不同颜色画布
cmap_light = ListedColormap(['orange', 'cyan', 'cornflowerblue'])
cmap_bold = ListedColormap(['darkorange', 'c', 'darkblue'])

plt.figure(figsize=(15,14))
# 根据不同的k值进行可视化
for ind,k in enumerate(k_list):
    clf = KNeighborsClassifier(k)
    clf.fit(X, y)
    
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    
    Z = Z.reshape(xx.shape)

    plt.subplot(321+ind)  
    plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
    
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold,
                edgecolor='k', s=20)
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.title("3-Class classification (k = %i)"% k)

plt.show()

当k=1的时候,在分界点位置的数据很容易受到局部的影响,图中蓝色的部分中还有部分绿色块,主要是数据太局部敏感。当k=15的时候,不同的数据基本根据颜色分开,当时进行预测的时候,会直接落到对应的区域。

数据集划分 

不能将所有数据集全部用于训练,为了能够评估模型的泛化能力,可以通过实验测试对学习器的泛化能力进行评估,进而做出选择。因此需要使用一个测试集来测试学习器对新样本的判别能力。

测试集要代表整个数据集、与训练集互斥、测试集与训练集建议比例: 2比8、3比7。

数据集划分的方法

1.将数据集划分成两个互斥的集合:训练集,测试集。

  • 训练集用于模型训练
  • 测试集用于模型验证

2.将数据集划分为训练集,验证集,测试集

  • 训练集用于模型训练
  • 验证集用于参数调整
  • 测试集用于模型验证

 1:将数据集 D 划分为两个互斥的集合,其中一个集合作为训练集 S,另一个作为测试集 T。

from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import ShuffleSplit
from collections import Counter
from sklearn.datasets import load_iris


def te1():

    # 1. 加载数据集
    x, y = load_iris(return_X_y=True)
    print('原始类别比例:', Counter(y))

        x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
    print('随机类别分割:', Counter(y_train), Counter(y_test))

    
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, stratify=y)
    print('分层类别分割:', Counter(y_train), Counter(y_test))


def te2():

    # 1. 加载数据集
    x, y = load_iris(return_X_y=True)
    print('原始类别比例:', Counter(y))
    print('*' * 40)

    # 2. 多次划分
    spliter = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
    for train, test in spliter.split(x, y):
        print('随机多次分割:', Counter(y[test]))

    spliter = StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
    for train, test in spliter.split(x, y):
        print('分层多次分割:', Counter(y[test]))

if __name__ == '__main__':
    te1()
    te2()

# 随机类别分割: Counter({0: 43, 2: 40, 1: 37}) Counter({1: 13, 2: 10, 0: 7})
# 分层类别分割: Counter({1: 40, 2: 40, 0: 40}) Counter({2: 10, 1: 10, 0: 10})
随机多次分割: Counter({1: 13, 0: 11, 2: 6})
随机多次分割: Counter({1: 12, 2: 10, 0: 8})
随机多次分割: Counter({1: 11, 0: 10, 2: 9})
随机多次分割: Counter({2: 14, 1: 9, 0: 7})
随机多次分割: Counter({2: 13, 0: 12, 1: 5})

分层多次分割: Counter({0: 10, 1: 10, 2: 10})
分层多次分割: Counter({2: 10, 0: 10, 1: 10})
分层多次分割: Counter({0: 10, 1: 10, 2: 10})
分层多次分割: Counter({1: 10, 2: 10, 0: 10})
分层多次分割: Counter({1: 10, 2: 10, 0: 10})

 K-Fold交叉验证,将数据随机且均匀地分成k分

 

  • 第一次使用标号为0-8的共9份数据来做训练,而使用标号为9的这一份数据来进行测试,得到一个准确率
  • 第二次使用标记为1-9的共9份数据进行训练,而使用标号为0的这份数据进行测试,得到第二个准确率
  • 共进行10次训练,最后模型的准确率为10次准确率的平均值,避免了数据划分而造成的评估不准确。
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from collections import Counter
from sklearn.datasets import load_iris

def test():

    # 1. 加载数据集
    x, y = load_iris(return_X_y=True)
    print('原始类别比例:', Counter(y))
    print('*' * 30)

    # 2. 随机交叉验证
    spliter = KFold(n_splits=5, shuffle=True, random_state=0)
    for train, test in spliter.split(x, y):
        print('随机交叉验证:', Counter(y[test]))

    print('*' * 30)

    # 3. 分层交叉验证
    spliter = StratifiedKFold(n_splits=5, shuffle=True, random_state=0)
    for train, test in spliter.split(x, y):
        print('分层交叉验证:', Counter(y[test]))

test()

数据划分结果:

随机交叉验证: Counter({1: 13, 0: 11, 2: 6})
随机交叉验证: Counter({2: 15, 1: 10, 0: 5})
随机交叉验证: Counter({0: 10, 1: 10, 2: 10})
随机交叉验证: Counter({0: 14, 2: 10, 1: 6})
随机交叉验证: Counter({1: 11, 0: 10, 2: 9})
****************************************
分层交叉验证: Counter({0: 10, 1: 10, 2: 10})
分层交叉验证: Counter({0: 10, 1: 10, 2: 10})
分层交叉验证: Counter({0: 10, 1: 10, 2: 10})
分层交叉验证: Counter({0: 10, 1: 10, 2: 10})
分层交叉验证: Counter({0: 10, 1: 10, 2: 10})

留一法:每次抽取一个样本做为测试集。

from sklearn.model_selection import LeaveOneOut
from sklearn.model_selection import LeavePOut
from sklearn.datasets import load_iris
from collections import Counter


def test01():

    # 1. 加载数据集
    x, y = load_iris(return_X_y=True)
    print('原始类别比例:', Counter(y))
    print('*' * 40)

    
    spliter = LeaveOneOut()
    for train, test in spliter.split(x, y):
        print('训练集:', len(train), '测试集:', len(test), test)

test01()

分类算法的评估

  • 利用训练好的模型使用测试集的特征值进行预测

  • 将预测结果和测试集的目标值比较,计算预测正确的百分比

  • 百分比就是准确率, 准确率越高说明模型效果越好

确定合适的K值 

K值过小:容易受到异常点的影响

k值过大:受到样本均衡的问题,K一般取一个较小的数值。

使用 scikit-learn 提供的 GridSearchCV 工具, 配合交叉验证法可以搜索参数组合

x, y = load_iris(return_X_y=True)

# 分割数据集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, stratify=y, random_state=0)

estimator = KNeighborsClassifier()
grid = {'n_neighbors': [1, 3, 5]}
estimator = GridSearchCV(estimator, param_grid=grid, cv=5)
estimator.fit(x_train, y_train)

K近邻算法的优缺点:

  • 优点:简单,易于理解,容易实现
  • 缺点:算法复杂度高,结果对K取值敏感,容易受数据分布影响

knn算法中我们最需要关注两个问题:k值的选择和距离的计算。

距离/相似度的计算:

样本之间的距离的计算,我们一般使用对于一般使用Lp距离进行计算。当p=1时候,称为曼哈顿距离,当p=2时候,称为欧氏距离,当p=∞时候,称为极大距离。一般采用欧式距离较多。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/330010.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

appium之联动pycharm

前置条件: 1.java环境安装好了 2.android-sdk安装好(uiautomatorviewer 也可以把这个启动起来) 3.appium安装好 4.adb devices查看下设备是否连接 pycharm入门代码--固定写法 from appium import webdriver# 定义字典变量 desired_caps …

机器学习笔记——机器学习的分类

1 机器学习是啥 机器学习是人工智能的一个分支,它是一门研究机器获取新知识和新技能,并识别现有知识的学问。 机器学习已广泛应用于数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA 序列测…

Luckysheet类似excel的在线表格(vue)

参考文档&#xff1a;快速上手 | Luckysheet文档 一、引入 在vue项目的public文件夹下的index.html的<head>标签里面引入 <link relstylesheet hrefhttps://cdn.jsdelivr.net/npm/luckysheetlatest/dist/plugins/css/pluginsCss.css /><link relstylesheet hre…

c# 视频播放之Vlc.DotNet.Forms

先说下优缺点 优点&#xff1a;与电脑无关&#xff0c;能播放主流编码格式视频。 缺点&#xff1a;只能播放本地视频&#xff0c;网络视频播放不了。 下面是具体操作和代码 1. 安装Vlc.DotNet.Forms 和 VideoLAN.LibVLC.Windows Vlc.DotNet.Forms 是播放库&#xff0c;Vid…

2018年认证杯SPSSPRO杯数学建模D题(第一阶段)投篮的最佳出手点全过程文档及程序

2018年认证杯SPSSPRO杯数学建模 对于投篮最佳出手点的探究 D题 投篮的最佳出手点 原题再现&#xff1a; 影响投篮命中率的因素不仅仅有出手角度、球感、出手速度&#xff0c;还有出手点的选择。规范的投篮动作包含两膝微屈、重心落在两脚掌上、下肢蹬地发力、身体随之向前上…

高效解决在本地计算机运行服务器端的jupyter lab

文章目录 问题解决方案step1step2step3step4 问题 目前&#xff0c;网上没有什么详细的关于在本地计算机上运行服务器端jupyter lab的教程&#xff0c;由于个人计算机计算资源有限&#xff0c;我们需要利用服务器端的GPU实现高效训练 这篇文章将指导您如何使用 ssh 隧道在远…

Spring框架面试题

目录 1.Spring中bean的生命周期 2.Spring中bean的循环依赖 3.SpringMVC执行流程 4.Springboot自动装配原理 5.Spring框架常见注解(Spring、Springboot、SpringMVC) 6.mybatis执行流程 7.mybatis延迟加载使用及原理 8.mybatis一级、二级缓存 1.Spring中bean的生命周期 2.…

Kafka 消息不能正常消费问题排查

订单宽表数据不同步 事情的起因是专员在 ze app 上查不到订单了&#xff0c;而订单数据是从 mysql 的 order_search_info 查询的&#xff0c;order_search_info 表的数据是从 oracel 的 BZ_ORDER_INFO 表同步过来的&#xff0c;查不到说明同步有问题 首先重启&#xff0c;同步…

Elasticsearch:将数据从 Snowflake 摄取到 Elasticsearch

作者&#xff1a;来自 Elastic Ashish Tiwari 为了利用 Elasticsearch 提供的强大搜索功能&#xff0c;许多企业在 Elasticsearch 中保留可搜索数据的副本。 Elasticsearch 是一种经过验证的技术&#xff0c;适用于传统文本搜索以及用于语义搜索用例的向量搜索。 Elasticsearch…

VSCODE使用CMAKE显示命令无法找到

背景&#xff1a;使用了code server&#xff0c;安装CMAKE和CMAKE TOOLS&#xff0c;但是通过ctrlshiftp打开命令面板&#xff0c;运行随便一个cmake指令&#xff0c;都出现了指令无法找到。具体为“命令"CMake: 配置"导致错误 (command ‘cmake.configure’ not fou…

PDF转PowerPoint - Java实现方法

通过编程实现PDF转PPT的功能&#xff0c;可以自动化转换过程&#xff0c;减少手动操作的工作量&#xff0c;并根据需要进行批量转换。将PDF文件转换为PPT文档后&#xff0c;可以利用PPT的丰富功能和动画效果&#xff0c;达到更好的演示效果。 在Java中&#xff0c;我们可以使用…

21所考408的院校有哪些?

计算机考研一直是考研的热门&#xff0c;那么在决定要参加计算机考研的时候&#xff0c;就要确定自己的复习方向&#xff0c;主流的复习方向有两类&#xff0c;一类是统考&#xff0c;也就是大家常说的408&#xff0c;还有一类是自命题&#xff0c;每一个学校的自命题都有所区别…

6. UE5 RPG AttributeSet的设置

AttributeSet 负责定义和持有属性并且管理属性的变化。开发者可以子类化UAttributeSet。在OwnerActor的构造方法中创建的AttributeSet将会自动注册到ASC。这一步必须在C中完成。 Attributes 是由 FGameplayAttributeData定义的浮点值。 Attributes能够表达从角色的生命值到角色…

QT第二周周三

题目&#xff1a;使用图片绘制出仪表盘 代码&#xff1a; widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *paren…

springBoot 添加自定义类库包

一、新建SpringBoot Web 二、添加类库包 com.saas.pdf 删除掉多余的类&#xff0c;新建类&#xff1a;PdfUtil.java package com.saas.pdf;public class PdfUtil {public static void Save(String filePath) {System.out.println("保存成功&#xff01;");} }三、…

uni-app中代理的两种配置方式

方式一: 在项目的 manifest.json 文件中点击 源码视图 在最底部的vue版本下编写代理代码 方式二: 在项目中创建 vue.config.js 文件然后进行配置 在页面中发起请求 完整的url&#xff1a;http://c.m.163.com/recommend/getChanListNews?channelT1457068979049&size10 …

072:vue+mapbox 点击某图层feature,高亮这部分

第072个 点击查看专栏目录 本示例是介绍如何在vue+mapbox中点击某图层feature,高亮这部分。思路是通过点击,获取点击部分的feature信息,生成一个新的source和layer,如果这个图层不为空,则清除之,相当于点击了别的地方,原有的高亮会删除掉,在别的地方高亮。 直接复制下…

Jmeter的文件参数化:CSV数据文件设置和_CSVRead函数

一、CSV数据文件设置 1、简介 CSV数据文件配置&#xff08;CSV Data Set Config&#xff09;可以将CSV文件中数据读入自定义变量中 Jmeter中CSV数据文件配置的界面如下图所示&#xff1a; 其中&#xff1a; &#xff08;1&#xff09;文件编码 文件的编码格式&#xff0c;与所…

Allegro教学:如何让原理图和PCB交互?

Allegro是一个强大的电子设计自动化&#xff08;EDA&#xff09;工具&#xff0c;广泛应用在PCB设计领域&#xff0c;其中有个操作是实现原理图和PCB文件的交互&#xff0c;该如何做&#xff1f;下面将探讨其实现方法&#xff0c;希望对小伙伴们有所帮助。 1、原理图设置 打开…

postman后端测试时invalid token报错+token失效报错解决方案

报错信息1{“msg”:“invalid token”,“code”:401} 没有添加postman的token信息 报错信息2{“msg”: “token失效&#xff0c;请重新登录”,“code”: 401} 写了token但是token信息写的是错的,会提示token失效 解决方案如下 仅写完后端的查询,但是前端还没写的时候,可…