第二章 数据处理篇:transforms

教程参考:
https://pytorch.org/tutorials/
https://github.com/TingsongYu/PyTorch_Tutorial
https://github.com/yunjey/pytorch-tutorial
详细的transform的使用样例可以参考:ILLUSTRATION OF TRANSFORMS


文章目录

  • 为什么要使用transforms
  • transforms方法举例
    • ToTensor()
    • Normalize()
    • Geometry
      • transforms.Resize()
      • transforms.CenterCrop( size )
      • transforms.RandomCrop(size)
      • transforms.RandomResizedCrop()
      • transforms.FiveCrop(size)
      • transforms.TenCrop(size, vertical_flip = False)
      • RandomHorizontalFlip and RandomVerticalFlip
      • RandomRotation()
    • Color
      • ColorJitter()
      • RandomGrayscale(p = 0.1)
      • GaussianBlur(kernel_size, sigma=(0.1, 2.0))
      • RandomInvert(p=0.5)
    • Composition
      • Compose(transforms)
      • RandomApply(transforms, p)
      • RandomChoice(transforms,p)
      • RandomOrder(transforms)
    • Miscellaneous
      • RandomErasing()
      • Lambda(lambda)
    • Auto-Augmentation

为什么要使用transforms

你得到的原始数据,可能并不是你期望的用于模型训练的数据的形式,比如数据中图像的大小不同、数据的格式不对。这时就需要你对数据进行统一的处理,torchvision.transforms就提供了一些帮助我们进行数据处理的简易手段。

在pytorch官方教程最开始,给了这样一个示例。
示例中使用自带的datasets:FashionMNIST,为了便于训练,对于原始数据和label分别使用了transform的方法。
对于数据本身,使用的方法是 ToTensor(),
对于标签,使用的方法是one-hot。
在后面的部分我们会详细介绍一下不同的transform方法。

import torch
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda

ds = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor(),
    target_transform=Lambda(lambda y: torch.zeros(10, dtype=torch.float).scatter_(0, torch.tensor(y), value=1))
)

torchvision.transforms中提供了多个方法,并且这些方法可以使用Compose进行连接,并按顺序执行。其中的大部分transforms方法都可以接受PIL图像和tensor图像作为输入,当然也有一部分在输入上有限制。

transforms方法举例

我们使用opencv读入一张cifar10中的图片作为例子,并将其通道从BGR转为RGB通道。使用opencv读入的图片,为numpy.ndarray格式。下图是我们的例子,一个类别为airplane的图像。
在这里插入图片描述

ToTensor()

ToTensor()方法可以把一个PIL图像或者numpy.ndarray数据转成FloatTensor的形式,并且将图像规范化到0和1之间。
更细致地来说,它会把一共PIL图像,或者范围在[0,255]的大小为(HxWxC)的numpy.ndarray转成一个大小为(CxHxW)的范围在[0.0,1.0]的floattensor。ndarray数据的dtype必须是np.uint8。
在这里插入图片描述

使用ToTensor()方法对我们的img进行处理,可以看到它原本为uint8的ndarray,变成了float32的tensor,它的形状从(32, 32, 3)转为(3, 32, 32),并且它的像素值的大小从51 到 255被转变为0.2到1.0。

我们也可以将图像读取为PIL Image的形式,并使用同样的方法处理。得到的结果是完全相同的。
在这里插入图片描述

Normalize()

Normalize()方法可以把一个tensor数据进行归一化/标准化处理。在使用时,需要你提供数据的均值和方差,Normalize()会对输入数据的每一个通道进行归一化处理。使用的方法是:
o u t p u t [ c h a n n e l ] = i n p u t [ c h a n n e l ] − m e a n [ c h a n n e l ] s t d [ c h a n n e l ] output[channel] = \frac{input[channel] - mean[channel]}{std[channel]} output[channel]=std[channel]input[channel]mean[channel]
要注意它的输入是tensor格式,所以一般把它放到ToTensor()后面使用。
使用之后数据的大小类型都没有发生变化,但是值的范围发生了变化。
在这里插入图片描述

Geometry

主要对图像的大小形状等进行调整,没有改变图像的颜色信息。

transforms.Resize()

torchvision.transforms.Resize(size, interpolation=InterpolationMode.BILINEAR, max_size=None, antialias='warn')

Resize()的输入可以是PIL图像也可以是tensor。给定一张图片,Resize()会对图像的长款进行缩放,把它变成我们期望的大小。

输入的size可以是一个整数也可以是一个序列[h,w],如果是单个整数的话,则被认为是期望的短边的大小,长边会按比例缩放。
输入的interpolation是一个插值方法。
输入max_size定义了一个目标图像的长边大小的上限,如果超过上限,则会重新resize。

transforms.CenterCrop( size )

CenterCrop()的输入可以是PIL图像也可以是Tensor。给定一张图片,CenterCrop()会从图中心开始对图像进行裁剪,只保留我们期望的大小。假如输入的图像大小比我们期望的size小,则会在图像周围进行补0操作。
下图的第一张图为32x32大小的原图,第二张图为10x10的crop结果,第三张图为40x40的crop结果。
在这里插入图片描述

transforms.RandomCrop(size)

torchvision.transforms.RandomCrop(size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant')

RandomCrop()的输入可以是PIL图像也可以是Tensor。给定一张图像,RandomCrop()会在随机位置对图像进行裁剪

输入的size可以是一个整数也可以是一个序列[h,w],如果是单个整数的话,认为crop的图像的大小是[size,size]。
输入的padding可以是一个整数也可以是一个序列,如果是一个整数,会使用这个整数对所有的边进行padding。如果是一个长度为2的序列,则会分别用来扩充left/right和top/bottom。如果是一个长度为4的整数,则分别对应了每一个边。
输入的padding_mode有四个选项,分别是constant(常数填充), edge(边缘填充),reflect(镜像填充),symmetric (对称填充)。
镜像填充在填充时以边界为镜面形成镜像。对称填充则是使用对称值。具体来说,对[1,2]在左右进行一个像素大小的填充,使用镜像填充得到的结果为[2,1,2,1],使用对称填充得到的结果为[1,1,2,2]。
下图的第一张图为32x32大小的原图,第二张和第三张为10x10的crop结果,因为randomcrop,所以两个图的结果不一样。
在这里插入图片描述

transforms.RandomResizedCrop()

torchvision.transforms.RandomResizedCrop(size, scale=(0.08, 1.0), ratio=(0.75, 1.3333333333333333), interpolation=InterpolationMode.BILINEAR, antialias: Optional[Union[str, bool]] = 'warn')

RandomResizedCrop()的输入可以是PIL图像也可以是Tensor。给定一张图像,RandomResizedCrop()会在随机位置对图像进行随机大小的裁剪,并把它resize成期望的大小。

输入的size可以是一个整数也可以是一个序列[h,w],如果是单个整数的话,认为crop的图像的大小是[size,size]。
输入的scale要求是一个tuple,定义了crop的区域大小的下限和上限,它使用的是一个基于原图大小的比例值。
输入的ratio要求是一个tuple,定义了crop区域的长宽比的下限和上限。
scale和ratio的区别是,scale代表了取长宽的基准,ratio是在这个基准上参考的长宽比。
输入的interpolation要求是一个插值方法,在RandomResizedCrop()中没有padding,因为随即裁剪得到的图像会使用插值方法resize到期望的大小。
下图的第一张图为32x32大小的原图,第二张和第三张为40x40的crop结。
在这里插入图片描述

transforms.FiveCrop(size)

FiveCrop()的输入可以是PIL图像也可以是Tensor,给定一张图像,获得图像四个角和中心的crop结果。
要注意,FiveCrop()返回的结果是五张图,而不是一张图。
对于一个大小为(b, c, h, w)的tensor的输入,它返回的结果为(b, ncrop, c, size_h, size_w)。
在这里插入图片描述

transforms.TenCrop(size, vertical_flip = False)

TenCrop()和FiveCrop()类型,只不过在其基础上增加了翻转。默认是使用水平翻转,如果vertical_clip设为True,就会使用垂直翻转。
在这里插入图片描述

RandomHorizontalFlip and RandomVerticalFlip

torchvision.transforms.RandomHorizontalFlip(p=0.5)

torchvision.transforms.RandomVerticalFlip(p=0.5)

两个函数的输入可以是PIL图像也可以是tensor。
输入P代表反转图像的概率,默认为0.5,即有50%的概率该图像会被翻转。

RandomRotation()

torchvision.transforms.RandomRotation(degrees, interpolation=InterpolationMode.NEAREST, expand=False, center=None, fill=0)

RandomRotation()的输入可以是PIL图像也可以是tensor。

输入degrees可以是一个整数或者一个序列。如果是整数则代表旋转的范围是 - degrees,+ degrees,如果是一组数则分别代表了最小值和最大值。
输入interpolation是一个插值方法。
输入expand代表是否要对图片进行扩展,经过旋转后图片的形状发生变化,如果expand = False,则会默认保持输出和输入图像大小一致。
输入center代表旋转中心,默认是图片中心。
输入fill代表填充图片边界外 区域所用的数值,默认是0。

第一行的是expand = False时随机旋转的结果,输出图像和输入图像保持一样的大小。第二行是expand = True时的结果,输出图像的大小发生了变化。
在这里插入图片描述

Color

主要对图像的颜色信息进行调整,没有改变图像的形状大小。

ColorJitter()

torchvision.transforms.ColorJitter(brightness: Union[float, Tuple[float, float]] = 0, contrast: Union[float, Tuple[float, float]] = 0, saturation: Union[float, Tuple[float, float]] = 0, hue: Union[float, Tuple[float, float]] = 0)

ColorJitter()的输入可以是PIL图像也可以是tensor。假如输入的是tensor,期望tensor的数据格式为[…, 1 or 3, H, W]。ColorJitter()可以随即调整图像的亮度,对比度,饱和度,色调等。
可以看到使用ColorJitter()后只有图像的颜色发生了变化,几何信息没有受到影响。
在这里插入图片描述

RandomGrayscale(p = 0.1)

RandomGrayscale()的输入可以是PIL图像是也可以是tensor,但是要求tensor的通道数是3。RandomGrayscale()有p的概率将一个图像转换为灰度图。

GaussianBlur(kernel_size, sigma=(0.1, 2.0))

GaussianBlur()的输入可以是PIL图像也可以是tensor。给定一张图像,它可以随机使用高斯模糊来把图像变得模糊。

输入kernel_size是一个整数或者序列,表示高斯核的大小。
输入sigma是代表标准差的上下界。

下图为kernel_size = 5时的结果。
在这里插入图片描述

RandomInvert(p=0.5)

RandomInvert()的输入可以是PIL图像也可以是tensor。给定一张图像,RandomInvert()有p的概率翻转图像的颜色。
在这里插入图片描述

Composition

主要是不同的transforms的组合方式。

Compose(transforms)

Compose()将多个transforms方法组合在一起,在使用时会按顺序进行。
如以下例子,首先将图片进行CenterCrop,然后转变为tensor格式,最后又将图像的dtype变为float。

>>> transforms.Compose([
>>>     transforms.CenterCrop(10),
>>>     transforms.PILToTensor(),
>>>     transforms.ConvertImageDtype(torch.float),
>>> ])

Compose()方法可以用torch.nn.Sequential()替代。

RandomApply(transforms, p)

RandomApply()将多个transforms方法组合在一起,在使用时按照概率p决定是否执行,要么全都执行,全么全都不执行。

RandomChoice(transforms,p)

RandomChoice() 参考random.choices方法,从多个transforms方法中选择一个使用。

RandomOrder(transforms)

RandomOrder()将多个transforms方法而在一起,在使用时会按随机顺序进行。

Miscellaneous

RandomErasing()

torchvision.transforms.RandomErasing(p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False)

RandomErasing()方法的输入必须是tensor,这个函数不支持PIL图像。给定一个图像,RandomErasing()方法会随机选择图像中的一块并擦除他的元素值。

输入p代表执行擦除操作的概率。
输入scale代表擦除区域占输入图像的范围。
输入ratio代表擦除区域的长宽比。
输入value代表擦除后用来替换的值。
输入inplace代表是否在原图像上进行操作。

因为输入必须是tensor,所以只能放在ToTensor()后面使用。

>>> transform = transforms.Compose([
>>>   transforms.RandomHorizontalFlip(),
>>>   transforms.PILToTensor(),
>>>   transforms.ConvertImageDtype(torch.float),
>>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
>>>   transforms.RandomErasing(),
>>> ])

Lambda(lambda)

Lambda()就是在最开始的例子中,target_transform使用的方法。

该例子定义了一个one-hot编码的函数,对于输入的整数类型的图像类别,可以将其转为特殊的one-hot编码格式

target_transform=Lambda(lambda y: torch.zeros(10, dtype=torch.float).scatter_(0, torch.tensor(y), value=1))

Auto-Augmentation

pytorch 提供了一些policy供使用者选择,比如 IMAGENET, CIFAR10 and SVHN. 依靠这些policy,使用者可以直接套用前人的augmentation方法,而不需要自己编写代码。

  • AutoAugment(policy) 使用你给定的policy执行augmentation方法。
  • RandAugment() https://arxiv.org/abs/1909.13719
  • TrivialAugmentWide() https://arxiv.org/abs/2103.10158
  • AugMix() https://arxiv.org/abs/1912.02781

之后有时间的话再介绍一下别的augmentation常用的包。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/32960.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

二叉树题目:单值二叉树

文章目录 题目标题和出处难度题目描述要求示例数据范围 解法一思路和算法代码复杂度分析 解法二思路和算法代码复杂度分析 题目 标题和出处 标题:单值二叉树 出处:965. 单值二叉树 难度 3 级 题目描述 要求 如果二叉树每个结点都具有相同的值&am…

SQL死锁

目录 前言: 分析: 死锁产生的原因: sql死锁 模拟: 解决办法: (本质:快速筛选或高效处理、以此减少锁冲突) ①大事务拆成小事务,尽可能缩小事务范围 大事务:将多个操作放在一个事务中执行…

【MOOC 测验】第5章 链路层

1、局域网的协议结构一般不包括( ) A. 数据链路层B. 网络层C. 物理层D. 介质访问控制层 逻辑链路控制子层、介质访问控制子层、物理层 2、下列关于二维奇偶校验的说法,正确的是( ) A. 可以检测和纠正双比特差错B…

【CVRP测评篇】 算法性能如何?来测!

我跨越了2100015秒的距离,为你送上更全面的算法性能评测。 目录 往期优质资源1 CVRP数据集2 实验准备2.1 计算机配置2.2 调参方法2.3 参数设定2.4 实验方法 3 实验结果3.1 最优解统计3.1.1各数据集上的算法性能对比3.1.2 求解结果汇总3.1.3小结一下3.1.4 还有话说 3…

【软考网络管理员】2023年软考网管初级常见知识考点(10)- 网际协议IP及IPV6,IPV4详解

涉及知识点 分类的IP地址,子网划分,CIDR和路由汇聚,IPV4数据报格式,IPV6协议,软考网络管理员常考知识点,软考网络管理员网络安全,网络管理员考点汇总。 原创于:CSDN博主-《拄杖盲学…

剑指 Offer 68 - II. 二叉树的最近公共祖先 / LeetCode 236. 二叉树的最近公共祖先(搜索与回溯)

题目: 链接:剑指 Offer 68 - II. 二叉树的最近公共祖先;LeetCode 236. 二叉树的最近公共祖先 难度:中等 上一题博客:剑指 Offer 68 - I. 二叉搜索树的最近公共祖先 / LeetCode 235. 二叉搜索树的最近公共祖先&#xf…

SSH远程直连Docker容器

文章目录 1. 下载docker镜像2. 安装ssh服务3. 本地局域网测试4. 安装cpolar5. 配置公网访问地址6. SSH公网远程连接测试7.固定连接公网地址8. SSH固定地址连接测试8. SSH固定地址连接测试 转载自cpolar极点云文章:SSH远程直连Docker容器 在某些特殊需求下,我们想ssh…

机器学习李宏毅学习笔记34

文章目录 前言一、Knowledge distillation二、Parameter quantization三、Architecture design四、Dynamic computation总结 前言 神经网络压缩(二)其他方法 一、Knowledge distillation 先train一个大的network叫做teacher network,小的ne…

Vue3:计算属性、监听器

computed 计算属性 计算属性是指 基于现有状态派生 (演变) 出新的状态,现有状态发生变化,派生状态重新计算。 computed 接收回调函数作为参数,基于回调函数中使用的响应式数据进行计算属性的创建,回调函数的返回值就是基于现有状态…

壳牌小程序笔记

壳牌加油站 uni-app-基础-day01 概览 为什么要学uni-app? 现在很多中小型公司,都有自己的小程序项目,然后开发小程序就会用到uni-app。 uni-app没有诞生之前,怎么写小程序 使用原生微信小程序这个框架去开发? 只…

解析vcruntime140.dll文件,缺失了要怎么去修复?

在计算机的世界中,vcruntime140.dll是一个重要的动态链接库文件。然而,有时候这个文件可能会引发一系列问题,影响应用程序的正常运行。如果你缺少了vcruntime140.dll,那么你的程序就会打不开,今天我们一起来聊聊vcrunt…

鸟类识别Python,基于TensorFlow卷积神经网络【实战项目】

一、介绍 鸟类识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,…

Linux Ubuntu man文档的图文安装教程

文章目录 前言man文档的起源man文档的安装man文档的使用总结 前言 当提及"man文档"时,通常是指Unix和类Unix系统中的手册页(man page),因为Linux是在Unix的基础上发展而来的操作系统,所以我们的Linux也有ma…

IIS安装localhost显示下载,urlrewrite设置

1.取消ftp服务勾选 2. ping localhost ping 127.0.0.1 如果显示 ::1 则需要禁用ipv6 在注册表 找到并单击下面的注册表子项: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip6\Parameters\ 双击“DisabledComponents”以修…

【机器学习】sklearn数据集的使用,数据集的获取和划分

「作者主页」:士别三日wyx 「作者简介」:CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」:对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 sklearn数据集 二、安装sklearn二、获取数据集三、…

从电源 LED 读取智能手机的秘密?

研究人员设计了一种新的攻击方法,通过记录读卡器或智能手机打开时的电源 LED,使用 iPhone 摄像头或商业监控系统恢复存储在智能卡和智能手机中的加密密钥。 众所周知,这是一种侧信道攻击。 通过密切监视功耗、声音、电磁辐射或执行操作所需…

STC单片机存储器介绍和使用

STC单片机存储器介绍和使用 🌿STC15F2K60S2系列内部结构框图 🌿STC12C5A60S2系列内部结构框图 📑程序存储器(ROM/Flash) 🔖STC单片机ROM容量大小可以根据其型号和命名规则了解到。 🌿STC15

WiSA Technologies开始接受WiSA E多声道音频开发套件的预订

美国俄勒冈州比弗顿市 — 2023年6月13日 — 为智能设备和下一代家庭娱乐系统提供沉浸式无线声效技术的领先供应商WiSA Technologies股份有限公司(NASDAQ股票代码:WISA)宣布:该公司现在正在接受其WiSA E开发套件的预订。WiSA E使用…

【深度学习】6-1 卷积神经网络 - 卷积层

卷积神经网络(Convolutional Neural Network,CNN)。 CNN 被用于图像识别、语音识别等各种场合,在图像识别的比赛中,基于深度学习的方法几乎都以 CNN 为基础。 首先,来看一下 CNN 的网络结构,了解 CNN 的大致框架。CNN…

macOS编译开源全景拼接库OpenPano

1. 准备工具 clang与cmake 如果要处理png文件要下载安装libjpeg 安装相当依赖: brew install gnu-sed brew install libjpeg brew install eigen brew install libomp2.克隆源码 git clone --recursive https://github.com/ppwwyyxx/OpenPano.git 3.编译 mkdir build cd …