2022 年第十二届 MathorCup 高校数学建模挑战赛D题思路(移动通信网络站址规划和区域聚类问题)

目录

一、前言

二、问题背景

三、问题

四、解题思路

(1)针对问题1:

(2)针对问题2:

(3)针对问题3:

五、附上几个典型代码

(1)K-means算法

(2)遗传算法

(3)模拟退火算法


一、前言

        本文是对2022 年第十二届 MathorCup 高校数学建模挑战赛D题移动通信网络站址规划和区域聚类问题的解题思路,希望能够对正在学习数学建模或者研究该类问题的读者提供帮助。作者在当届的比赛中,依据这个思路获得了本科组一等奖的成绩,可以说这个思路还是具有一定的合理性的。

附获奖证书:

二、问题背景

        移动通信技术规模飞速发展,运营规模也越来越大,导致带来的通信网络越来越复杂。随着 5G 的发展,通信的带宽越来越大,但基站的能覆盖范围越来越小,使得覆盖同样的区域,需要的基站数量变的更多。另外,基站和天线的种类也变多了。这就使得通信网络的规划特别是站址选择的问题变得越来越复杂。 站址选择问题是:根据现网天线的覆盖情况,给出现网的弱覆盖区域,选择一定数量的点,使得在这些点上新建基站后,可以解决现网的弱覆盖区域的覆盖问题。例如,下图为某城市某区域的现网覆盖情况,其中红色的区域表示为弱覆盖区域。

        在实际网络规划中,考虑基站的建设成本和一些其他因素,有时候可能无法把所有弱覆盖区域都解决,这时候就需要考虑业务量的因素,尽量优先解决业务量高的弱覆盖区域。
为了便于计算,将给定的区域用很小的栅格进行划分,只考虑每个栅格的中心点,即任给一个区域,都可以划分成有限个点。每个点有一些属性值,包括:坐标,是否为弱覆盖点,业务量等。站址也只能选择区域内  的点。某个点是否被规划基站覆盖可以按如下方法判断:

        同时,实际中还需要考虑一个约束条件,即新建站址之间以及新建站 址和现有站址之间的距离不能小于等于给定门限

三、问题

        问题 1 : 给定区域的大小是 2500 × 2500 个栅格即 2500 × 2500 个点,其中横坐标范围是 0 2499 ,纵坐标范围是 0 2499 。附件 1 中是筛选出该区域中的弱覆盖点的信息,包括每个点的坐标和业务量。给定 2 种基站,分别为:宏基站(覆盖范围 30 ,成本 10),微基站(覆盖范围 10 ,成本 1) 附件 2 中还给出了现网基站的坐标点,新建站址之以及新建站址和现有站址之间的距离的门限是 10。 根据给定的信息和附件中的数据,进行站址规划,使得弱覆盖点总业务量的 90%被规划基站覆盖。给出选择的站址的坐标以及每个站址选择的基站种类。站址的坐标只能在给定区域内的 2500 × 2500 个点中选择。
        问题 2:进一步考虑,实际中,每个站并不是完全的圆形覆盖,而是每个站上有 3 个扇区,每个扇区指向一个方向。每个扇区在主方向上覆盖范围最大(宏基站为 30 ,微基站为 10 ),在主方向左右 60 度的范围内可以覆盖,覆盖范围按线性逐渐缩小,在 60 度的时候,覆盖范围为主方向覆盖 范围的一半。超过 60 度,则无法被该扇区覆盖。考虑每个站的任意 2 个扇区的主方向之间的夹角不能小于 45 度,同时仍然考虑上一问中的基站成本等其他条件,问在最优站址和扇区角度的条件下,新建站能否覆盖弱覆盖点总业务量的 90%。若能,给出最优站址和扇区角度的结果;否则,给出给出最优站址和扇区角度的结果,并给出最多可以覆盖的弱覆盖点的总业务量的比例。
        问题 3:实际工作中,为了更好的解决弱覆盖问题,需要对弱覆盖点进行区域聚类,把距离近的弱覆盖点聚成一类,可以得到弱覆盖区域,这样可以对不同的弱覆盖区域分开管理使得可以更好的解决弱覆盖问题。若 2 个弱覆盖点的距离不大于 20 ,则这 2 个弱覆盖点应聚为一类,并且考虑聚类性质具有传递性,即若点 A 和点 B 是一类的,点 B 和点 C 是一类的,则点 A B C 都是一类的。试对所有弱覆盖点进行聚类,要求聚类所用方法的总时间复杂度尽量低。

四、解题思路

(1)针对问题1:

        1. 可以使用遗传算法进行站址规划。将每个点看作一条基因,并将该区域内所有点的坐标以及业务量作为初始种群。根据遗传算法的步骤进行迭代,每次选择适应度高的个体进行繁殖和变异,最终得到一组规划站址的基因序列。根据规划站址的坐标可以计算出每个站址覆盖的弱覆盖点的业务量,并根据业务量的大小选择规划基站的种类。
        2. 可以使用层次分析法(AHP)进行站址规划和基站选择。将站址规划和基站选择作为两个主要因素,设定一些子因素,比较宏基站和微基站在子因素上的权重,最终得到宏基站和微基站在总体上的权重比,然后根据所覆盖的弱覆盖点的业务量大小,选择相应的基站类型。

(2)针对问题2:

        1. 可以使用基于遗传算法和模拟退火的混合算法进行站址规划和扇区角度的优化。将每个站点的坐标和三个扇区的角度和主方向看作基当前代的基因序列。将每个基因序列视为一个个体,对每个个体计算弱覆盖点的业务量并根据问题1的规划思路选择基站类型。然后,通过混合算法对基因序列进行优化,得到最优解。
        2. 可以使用聚类算法对弱覆盖点进行聚类,然后在每个聚类区域内进行站址规划和基站选择。可以使用K-Means对所有弱覆盖点进行聚类,或者使用DBSCAN等基于密度的聚类算法。在每个弱覆盖点所属的聚类区域内进行站址规划和基站选择,使得在每个区域内选择的站点能够覆盖尽可能多的弱覆盖点并满足问题1中给定的门限条件。每个区域内不同站点之间夹角的大小需要满足问题2中给定的约束条件。

(3)针对问题3:

        针对问题3,可以使用基于密度的聚类算法进行优化。DBSCAN使用密度来定义聚类,可以自动确定最佳集群数量和最佳聚类半径。基于此,可以使用DBSCAN进行弱覆盖点的聚类,从而得到弱覆盖区域,并根据每个区域内的弱覆盖点的业务量大小进行站址规划和基站选择。在每个区域内选择的站点应该能够覆盖尽可能多的弱覆盖点,并且还应该减少不同区域内站点的重叠,以最大化覆盖率并降低规划成本。

五、附上几个典型代码

        这里是几个典型的算法代码(当然,不是作者在竞赛过程中使用的代码):

(1)K-means算法

        以下是经典的K-means算法的Python实现代码:

```
import numpy as np

def kmeans(X, K, max_iters=10):
    m, n = X.shape # 获取样本数量和特征数量

    # 从样本中随机选择K个质心
    centroids = X[np.random.choice(m, K, replace=False)]

    for i in range(max_iters):
        # 计算每个样本点与每个质心的距离
        distances = np.sqrt(((X - centroids[:, np.newaxis]) ** 2).sum(axis=2))

        # 将每个样本归为距离最近的质心点所在的簇
        labels = distances.argmin(axis=0)

        # 重新计算质心的位置
        centroids = np.array([X[labels == k].mean(axis=0) for k in range(K)])

    return centroids, labels
```

        其中,X是一个(m, n)的numpy数组,表示共有m个n维样本;K是需要聚类的簇数。max_iterations是可选参数,表示最大迭代次数,默认为10次。
        算法返回了每个簇的质心位置centroids和每个样本点所属的簇标签labels。

(2)遗传算法

        以下是经典的遗传算法Python实现代码:

```
import random
import numpy as np

def genetic_algorithm(fitness_func, generation_size, gene_size, mutation_prob, elite_rate=0.1, max_generations=100):
    # 迭代代数为0
    generation = 0

    # 创建初始种群
    population = np.random.rand(generation_size, gene_size)

    # 开始迭代
    while generation < max_generations:
        # 计算适应度分数
        fitness = fitness_func(population)

        # 找到最好的适应度分数和个体(即最大化适应度)
        best_fitness = np.max(fitness)
        best_individual = population[np.argmax(fitness), :]

        # 打印每一代的最好适应度分数
        print("Generation:", generation, "Best Fitness:", best_fitness)

        # 选择下一代
        next_population = []

        # 选择精英个体
        elites = population[np.argsort(fitness)[::-1][:int(generation_size * elite_rate)]]

        # 将精英个体加入下一代中
        next_population.extend(elites)

        # 开始生成新的后代
        while len(next_population) < generation_size:
            # 通过赌轮选择父母
            parent1 = roulette_selection(population, fitness)
            parent2 = roulette_selection(population, fitness)

            # 通过交叉操作,生成新的后代
            child = crossover(parent1, parent2)

            # 通过变异操作,引入新的遗传变异
            child = mutate(child, mutation_prob)

            # 将后代加入下一代中
            next_population.append(child)

        # 更新种群
        population = np.array(next_population)

        # 增加代数
        generation += 1

    # 返回最终的最优解
    return best_individual


# 赌轮选择函数
def roulette_selection(population, fitness):
    total_fitness = np.sum(fitness)
    selection_probs = fitness / total_fitness
    return population[np.random.choice(len(population), p=selection_probs)]

# 交叉操作函数
def crossover(parent1, parent2):
    crossover_point = np.random.randint(len(parent1))
    child = np.concatenate((parent1[:crossover_point], parent2[crossover_point:]))
    return child

# 变异操作函数
def mutate(individual, mutation_prob):
    for i in range(len(individual)):
        if np.random.rand()<mutation_prob:
            individual[i] = 1-individual[i]
    return individual
```

        其中,fitness_func是适应度函数,用于计算种群中每个个体的适合程度;generation_size是种群大小;gene_size是个体基因长度;mutation_prob是变异概率;elite_rate是精英率,即每一代中最好的一部分个体会直接进入下一代。max_generations是最大迭代次数。
算法返回一个最优解(best_individual)。

(3)模拟退火算法

        以下是一个通用的模拟退火算法Python实现代码:

```
import numpy as np

def simulated_annealing(cost_func, initial_solution, max_iterations, initial_temperature=100, cooling_rate=0.95, stopping_temperature=1e-6):
    # 初始温度
    temperature = initial_temperature

    # 初始解
    current_solution = initial_solution
    best_solution = current_solution

    # 计算初始成本值
    current_cost = cost_func(current_solution)

    # 迭代直到温度达到最低值
    for i in range(max_iterations):
        # 选择一个随机解
        next_solution = current_solution + 0.01 * np.random.randn(*current_solution.shape)

        # 计算新成本值
        next_cost = cost_func(next_solution)

        # 计算概率
        acceptance_probability = acceptance_probability_func(current_cost, next_cost, temperature)

        # 根据概率接受或拒绝新解
        if acceptance_probability > np.random.rand():
            current_solution = next_solution
            current_cost = next_cost

        # 如果当前解优于最优解,则更新最优解
        if current_cost < cost_func(best_solution):
            best_solution = current_solution

        # 降低温度
        temperature *= cooling_rate

        # 如果温度降低到阈值以下,则退出循环
        if temperature < stopping_temperature:
            break

    # 返回最优解
    return best_solution

# 温度接受概率函数
def acceptance_probability_func(current_cost, next_cost, temperature):
    if next_cost < current_cost:
        return 1.0
    else:
        return np.exp((current_cost - next_cost) / temperature)
```

        其中,cost_func是成本函数(目标函数),用于计算解的成(目标值);initial_solution是初始解;max_iterations是迭代次数;initial_temperature是初始温度;cooling_rate是温度下降率;stopping_temperature是停止温度阈值。该算法返回最优解(best_solution)。

        在模拟退火算法中,温度下降速度(即初始温度和温度下降率)是一个关键参数,因此在不同的应用场景中需要根据实际情况进行适当调整。另外,由于模拟退火算法本身是一种随机算法,因此每一次运行结果都可能不同。为了得到可靠的结果,通常会运行多次并对结果进行平均。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/32707.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【HTTP 协议】掌握 Web 的核心技术

哈喽&#xff0c;大家好~我是你们的老朋友&#xff1a;保护小周ღ 谈起 HTTP 协议&#xff08;超文本传输协议&#xff09;&#xff0c;不知道大家第一次是从什么地方了解到这个协议的呢&#xff1f;在真实的网络环境中网络协议的种类非常多&#xff0c;其中有一些耳熟能详的…

深入解析大型语言模型:从训练到部署大模型

简介 随着数据科学领域的深入发展&#xff0c;大型语言模型—这种能够处理和生成复杂自然语言的精密人工智能系统—逐渐引发了更大的关注。 LLMs是自然语言处理&#xff08;NLP&#xff09;中最令人瞩目的突破之一。这些模型有潜力彻底改变从客服到科学研究等各种行业&#x…

SpringSecurity实现Remember-Me实践

【1】基于会话技术的实现 也就是基于Cookie的实现&#xff0c;用户信息通过某种规则进行加密然后生成一个字符串设置为cookie。 ① 登录页面 这里name"remember-me"表示“记住我”的复选框&#xff0c;默认key是remember-me。 <form action"/user/login&…

EasyCVR电子地图鼠标悬停展示经纬度的技术实现

EasyCVR可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有GB28181、RTSP/Onvif、RTMP等&#xff0c;以及厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等&#xff0c;能对外分发RTSP、RTMP、FLV、HLS、WebRTC等格式的视频流。平台可…

VS2019 Python连接Sql server2008

安好后&#xff1a; 测试代码&#xff1a; import pymssqltry:conn pymssql.connect(host127.0.0.1,usersa,password123456,databasehotel,charsetutf8)# 连接并执行Sql语句cursor conn.cursor()sql select * from odercursor.execute(sql)# 获取数据集rs cursor.fetchal…

从操作系统角度了解内存管理

一.内存管理 1.主要功能 内存管理的主要功能有: 内存空间的分配与回收。由操作系统完成主存储器空间的分配和管理&#xff0c;使程序员摆脱存储分配的麻烦&#xff0c;提高编程效率。地址转换。在多道程序环境下&#xff0c;程序中的逻辑地址与内存中的物理地址不可能一致, …

React--Component组件浅析

目录 一 前言二 什么是React组件&#xff1f;三 二种不同 React 组件1 class类组件2 函数组件 四 组件通信方式五 组件的强化方式六 总结 一 前言 在 React 世界里&#xff0c;一切皆组件&#xff0c;我们写的 React 项目全部起源于组件。组件可以分为两类&#xff0c;一类是类…

Redis---集群

目录 一、集群的介绍 1.1 为什么需要集群呢&#xff1f; 1.2 什么是集群&#xff1f; 1.2 集群能干什么呢&#xff1f; 二、集群的算法之分片&槽位slot 2.1 什么是槽位slot&#xff1f; 2.2 分片 2.3 使用槽位和分片的优势 2.4 slot 槽位映射的三种算法 1、哈…

《深入浅出WPF》学习笔记

文章目录 相关资源前言WPF 学习笔记环境配置WPF基础&#xff1a;一个WPF程序是如何启动的xmal文件和cs文件是如何连接的如何确定启动页面xmal文件如何引用别的文件如何引用 WPF是如何创建元素&#xff0c;改变元素的WPF的元素创建和简单属性赋值WPF的树形界面Xmal属性赋值为什么…

内网安全:代理技术详解

目录 代理技术实验所用网络拓扑图及说明 代理技术 SOCK协议 使用代理技术的原因 正向代理与反向代理 实战一&#xff1a;MSF代理通讯 实验原理说明 一. Meterpreter建立路由 二. MSF建立节点 三. 建立代理到MSF上 实战二&#xff1a;CS代理通讯 实验原理说明 一. …

【MYSQL篇】Update语句原理详解

文章目录 前言缓冲池Buffer PoolInnoDB 内存结构redo logundo logBinlog 总结 前言 前面的文章我们已经对MySQL的查询语句的执行流程进行了说明&#xff0c;感兴趣的可以去看看&#xff1a; 【MySQL篇】Select语句原理详解 本篇文章我们来聊聊 MySQL更新语句的执行原理。更新…

从0到1精通自动化测试,pytest自动化测试框架,doctest测试框架(十四)

一、前言 doctest从字面意思上看&#xff0c;那就是文档测试。doctest是python里面自带的一个模块&#xff0c;它实际上是单元测试的一种。 官方解释&#xff1a;doctest 模块会搜索那些看起来像交互式会话的 Python 代码片段&#xff0c;然后尝试执行并验证结果 doctest测试…

spring mvc架构模式概述

三层架构: pojo&#xff0c;bean&#xff0c;domain是一个意思&#xff0c;表示实体类 dao表示操作数据库的那个类&#xff0c;一般是一张表一个

Redis主从架构、数据同步原理、全量同步、增量同步

目录 专栏导读一、Redis主从架构二、数据同步原理三、全量同步的流程三、可以从以下几个方面来优化Redis主从就集群四、全量同步和增量同步区别&#xff1f;五、什么时候执行全量同步&#xff1f;六、什么时候执行增量同步&#xff1f;七、超卖问题 大家好&#xff0c;我是哪吒…

Gitlab保护分支与合并请求

目录 引言 1、成员角色指定 1、保护分支设置 2、合并请求 引言 熟悉了Git工作流之后&#xff0c;有几个重要的分支&#xff0c;如Master(改名为Main)、Develop、Release分支等&#xff0c;是禁止开发成员随意合并和提交的&#xff0c;在此分支上的提交和推送权限仅限项目负责…

机器视觉初步6-1:基于梯度的图像分割

把基于梯度的图像分割单独拿出来。 文章目录 一、图像梯度相关算子的原理1. Sobel算子2. Prewitt算子3. Roberts算子 二、python和halcon算子实现1.python实现2.halcon实现 基于梯度的图像分割方法利用像素之间的梯度信息来进行图像分割。 梯度 1是图像中像素灰度值变化最快的…

Unity Android打包成Apk之后 紫屏 无内容

打包成Apk之后 打开游戏 过完logo是紫色的屏幕什么都没有 解决方法&#xff1a; 打开项目的目录&#xff1a; 删除除了 .vscode assets package 之外的所有文件夹 然后重新打开就可以了

kettle架构图

2、架构说明 1&#xff09;最底层的是kettle的核心引擎层&#xff0c;相关的jar在lib目录下。 2&#xff09;中间是开发层&#xff0c;在开发阶段我们接触最多的就是通过spoon进行开发&#xff0c;通过Spoon.bat或者spoon.sh即可启动客户端&#xff0c;开发文件调试之前要先保…

一篇文章带你从入门都入土 Kafka 消息中间件(原理+代码)

目录 一、Kafka定义 二、消息队列 三、Kafka基础架构图 四、安装Kafka 4.1 为每台服务器下载Kafka并解压 4.2 查看目录结构 4.3 为每台服务器修改配置文件server.properties 4.4 为每台服务器配置Kafka环境变量 4.5 启动zookeeper集群 4.6 启动Kafka集群 4.7 关闭Ka…

河道垃圾自动识别监测算法 opencv

河道垃圾自动识别监测系统通过pythonopencv网络模型技术&#xff0c;河道垃圾自动识别监测算法对水面上的垃圾进行自动识别&#xff0c;一旦发现垃圾污染将自动发出警报。OpenCV基于C实现&#xff0c;同时提供python, Ruby, Matlab等语言的接口。OpenCV-Python是OpenCV的Python…