多目标优化(Python):多目标粒子群优化算法(MOPSO)求解ZDT1、ZDT2、ZDT3、ZDT4、ZDT6(提供Python代码)

一、多目标粒子群优化算法

多目标粒子群优化算法(MOPSO)是一种用于解决多目标优化问题的进化算法。它基于粒子群优化算法(PSO),通过引入多个目标函数和非支配排序来处理多目标问题。

MOPSO的基本思想是将问题转化为在多维搜索空间中寻找一组最优解的问题。每个解被称为一个粒子,它在搜索空间中移动,并根据自身的经验和群体的经验进行调整。粒子的位置表示解的候选解,速度表示解的搜索方向和步长。

MOPSO的算法流程如下:

  1. 初始化粒子群的位置和速度。

  2. 计算每个粒子的适应度值,即目标函数值。

  3. 根据非支配排序和拥挤度距离计算,对粒子进行排序。

  4. 更新粒子的速度和位置,以便更好地探索搜索空间。

  5. 重复步骤2-4,直到达到停止条件。

MOPSO的优点是能够找到一组近似最优解,这些解分布在整个帕累托前沿上,提供了多个可行的解决方案供决策者选择。它还具有较好的全局搜索能力和收敛性能。

MOPSO的应用领域包括工程优化、机器学习、数据挖掘等。它已经在许多实际问题中取得了良好的效果。

二、ZDT1、ZDT2、ZDT3、ZDT4、ZDT6介绍

ZDT1、ZDT2、ZDT3、ZDT4和ZDT6是一些常用的多目标优化测试函数。它们被广泛用于评估多目标优化算法的性能和效果。

ZDT1函数是一个双目标优化函数,它具有一个全局最优解和一个局部最优解。该函数的定义如下:

f 1 ( x ) = x 1 f 2 ( x ) = g ( x ) ⋅ h ( f 1 ( x ) , g ( x ) ) g ( x ) = 1 + 9 n − 1 ⋅ ∑ i = 2 n x i h ( f 1 ( x ) , g ( x ) ) = 1 − f 1 ( x ) g ( x ) − f 1 ( x ) g ( x ) ⋅ sin ⁡ ( 10 π f 1 ( x ) ) f_1(x) = x_1 \\ f_2(x) = g(x) \cdot h(f_1(x), g(x)) \\ g(x) = 1 + \frac{9}{n-1} \cdot \sum_{i=2}^{n} x_i \\ h(f_1(x), g(x)) = 1 - \sqrt{\frac{f_1(x)}{g(x)}} - \frac{f_1(x)}{g(x)} \cdot \sin(10 \pi f_1(x)) f1(x)=x1f2(x)=g(x)h(f1(x),g(x))g(x)=1+n19i=2nxih(f1(x),g(x))=1g(x)f1(x) g(x)f1(x)sin(10πf1(x))

其中, x = ( x 1 , x 2 , . . . , x n ) x = (x_1, x_2, ..., x_n) x=(x1,x2,...,xn)是决策变量向量, n n n是决策变量的维度。ZDT1函数的全局最优解是 x ∗ = ( 0 , 1 , . . . , 1 ) x^* = (0, 1, ..., 1) x=(0,1,...,1),对应的目标函数值为 f ∗ = ( 0 , 1 − 0 , . . . , 1 − 1 − 1 n 2 ) f^* = (0, 1 - \sqrt{0}, ..., 1 - \sqrt{1 - \frac{1}{n^2}}) f=(0,10 ,...,11n21 )

ZDT2函数也是一个双目标优化函数,它具有一个全局最优解和一个局部最优解。该函数的定义如下:

f 1 ( x ) = x 1 f 2 ( x ) = g ( x ) ⋅ h ( f 1 ( x ) , g ( x ) ) g ( x ) = 1 + 9 n − 1 ⋅ ∑ i = 2 n x i h ( f 1 ( x ) , g ( x ) ) = 1 − ( f 1 ( x ) g ( x ) ) 2 f_1(x) = x_1 \\ f_2(x) = g(x) \cdot h(f_1(x), g(x)) \\ g(x) = 1 + \frac{9}{n-1} \cdot \sum_{i=2}^{n} x_i \\ h(f_1(x), g(x)) = 1 - (\frac{f_1(x)}{g(x)})^2 f1(x)=x1f2(x)=g(x)h(f1(x),g(x))g(x)=1+n19i=2nxih(f1(x),g(x))=1(g(x)f1(x))2

其中, x = ( x 1 , x 2 , . . . , x n ) x = (x_1, x_2, ..., x_n) x=(x1,x2,...,xn)是决策变量向量, n n n是决策变量的维度。ZDT2函数的全局最优解是 x ∗ = ( 0 , 1 , . . . , 1 ) x^* = (0, 1, ..., 1) x=(0,1,...,1),对应的目标函数值为 f ∗ = ( 0 , 1 − 0 2 , . . . , 1 − 0 2 ) f^* = (0, 1 - 0^2, ..., 1 - 0^2) f=(0,102,...,102)

ZDT3函数是一个双目标优化函数,它具有一个全局最优解和一个局部最优解。该函数的定义如下:

f 1 ( x ) = x 1 f 2 ( x ) = g ( x ) ⋅ h ( f 1 ( x ) , g ( x ) ) g ( x ) = 1 + 9 n − 1 ⋅ ∑ i = 2 n x i h ( f 1 ( x ) , g ( x ) ) = 1 − f 1 ( x ) g ( x ) − f 1 ( x ) g ( x ) ⋅ sin ⁡ ( 10 π f 1 ( x ) ) f_1(x) = x_1 \\ f_2(x) = g(x) \cdot h(f_1(x), g(x)) \\ g(x) = 1 + \frac{9}{n-1} \cdot \sum_{i=2}^{n} x_i \\ h(f_1(x), g(x)) = 1 - \sqrt{\frac{f_1(x)}{g(x)}} - \frac{f_1(x)}{g(x)} \cdot \sin(10 \pi f_1(x)) f1(x)=x1f2(x)=g(x)h(f1(x),g(x))g(x)=1+n19i=2nxih(f1(x),g(x))=1g(x)f1(x) g(x)f1(x)sin(10πf1(x))

其中, x = ( x 1 , x 2 , . . . , x n ) x = (x_1, x_2, ..., x_n) x=(x1,x2,...,xn)是决策变量向量, n n n是决策变量的维度。ZDT3函数的全局最优解是 x ∗ = ( 0 , 1 , . . . , 1 ) x^* = (0, 1, ..., 1) x=(0,1,...,1),对应的目标函数值为 f ∗ = ( 0 , 1 − 0 , . . . , 1 − 1 − 1 n 2 ) f^* = (0, 1 - \sqrt{0}, ..., 1 - \sqrt{1 - \frac{1}{n^2}}) f=(0,10 ,...,11n21 )

ZDT4函数是一个双目标优化函数,它具有一个全局最优解和一个局部最优解。该函数的定义如下:

f 1 ( x ) = x 1 f 2 ( x ) = g ( x ) ⋅ h ( f 1 ( x ) , g ( x ) ) g ( x ) = 1 + 10 ( n − 1 ) + ∑ i = 2 n ( x i 2 − 10 cos ⁡ ( 4 π x i ) ) h ( f 1 ( x ) , g ( x ) ) = 1 − f 1 ( x ) g ( x ) f_1(x) = x_1 \\ f_2(x) = g(x) \cdot h(f_1(x), g(x)) \\ g(x) = 1 + 10(n-1) + \sum_{i=2}^{n} (x_i^2 - 10 \cos(4 \pi x_i)) \\ h(f_1(x), g(x)) = 1 - \sqrt{\frac{f_1(x)}{g(x)}} f1(x)=x1f2(x)=g(x)h(f1(x),g(x))g(x)=1+10(n1)+i=2n(xi210cos(4πxi))h(f1(x),g(x))=1g(x)f1(x)

其中, x = ( x 1 , x 2 , . . . , x n ) x = (x_1, x_2, ..., x_n) x=(x1,x2,...,xn)是决策变量向量, n n n是决策变量的维度。ZDT4函数的全局最优解是 x ∗ = ( 0 , 1 , . . . , 1 ) x^* = (0, 1, ..., 1) x=(0,1,...,1),对应的目标函数值为 f ∗ = ( 0 , 1 − 0 , . . . , 1 − 1 − 1 n 2 ) f^* = (0, 1 - \sqrt{0}, ..., 1 - \sqrt{1 - \frac{1}{n^2}}) f=(0,10 ,...,11n21 )

ZDT6函数是一个双目标优化函数,它具有一个全局最优解和一个局部最优解。该函数的定义如下:

f 1 ( x ) = 1 − exp ⁡ ( − 4 x 1 ) ⋅ sin ⁡ 6 ( 6 π x 1 ) f 2 ( x ) = g ( x ) ⋅ h ( f 1 ( x ) , g ( x ) ) g ( x ) = 1 + 9 ( ∑ i = 2 n x i n − 1 ) 0.25 h ( f 1 ( x ) , g ( x ) ) = 1 − ( f 1 ( x ) g ( x ) ) 2 f_1(x) = 1 - \exp(-4x_1) \cdot \sin^6(6 \pi x_1) \\ f_2(x) = g(x) \cdot h(f_1(x), g(x)) \\ g(x) = 1 + 9 \left(\frac{\sum_{i=2}^{n} x_i}{n-1}\right)^{0.25} \\ h(f_1(x), g(x)) = 1 - \left(\frac{f_1(x)}{g(x)}\right)^2 f1(x)=1exp(4x1)sin6(6πx1)f2(x)=g(x)h(f1(x),g(x))g(x)=1+9(n1i=2nxi)0.25h(f1(x),g(x))=1(g(x)f1(x))2

其中, x = ( x 1 , x 2 , . . . , x n ) x = (x_1, x_2, ..., x_n) x=(x1,x2,...,xn)是决策变量向量, n n n是决策变量的维度。ZDT6函数的全局最优解是 x ∗ = ( 0 , 1 , . . . , 1 ) x^* = (0, 1, ..., 1) x=(0,1,...,1),对应的目标函数值为 f ∗ = ( 1 − exp ⁡ ( − 4 ⋅ 0 ) ⋅ sin ⁡ 6 ( 6 π ⋅ 0 ) , 1 − ( 0 g ( x ) ) 2 ) f^* = (1 - \exp(-4 \cdot 0) \cdot \sin^6(6 \pi \cdot 0), 1 - \left(\frac{0}{g(x)}\right)^2) f=(1exp(40)sin6(6π0),1(g(x)0)2)

三、MOPSO求解ZDT1、ZDT2、ZDT3、ZDT4、ZDT6

3.1部分Python代码

import numpy as np
import matplotlib.pyplot as plt
from MOPSO import * 
from FunInfo import FunInfo
# 参数设置
#testProblem可取1 2 3 4 5 ,分别对应测试函数ZDT1、ZDT2、ZDT3、ZDT4、ZDT6
testProblem=1#测试问题
num_particles = 100#种群大小
num_iterations = 100#最大迭代次数

#获取测试函数信息
GetFun=FunInfo(testProblem)
Fun,dim,bounds=GetFun.GetFunDetail()
#Fun 目标函数
#dim 变量维度
#bounds 变量上下界

# 运行MOPSO
pareto_POF,pareto_POS = mopso(num_particles, bounds, num_iterations,Fun)
# pareto_POF 算法得到的POF
# pareto_POS 算法得到的POS
# 绘制Pareto前沿
plt.scatter(pareto_POF[:, 0], pareto_POF[:, 1])
plt.xlabel('Objective 1')
plt.ylabel('Objective 2')
plt.title('Pareto Front')
plt.show()


3.2部分结果

MOPSO求解ZDT1结果:
在这里插入图片描述

在这里插入图片描述

MOPSO得到的POF

0.259709	2.28455
0.00690907	3.05093
0.140244	2.52921
0.194179	2.40473
0.291803	2.23196
0.0478809	2.8041
0.020577	2.91755
0.193925	2.4124
0.00368497	3.08368
0.0265255	2.89159
0.124372	2.54897
0.0903595	2.65361
0.111091	2.59651
0.336201	2.17209
0.111091	2.59651
0.161572	2.47243
0.229625	2.32815
0.250301	2.30713
0.232698	2.32376
0.0380952	2.83465
0	3.16703


MOPSO得到的POS

0.259709	0.206563	0.262395	0.330207	0.221909	0.216457	0.240484	0.264247	0.17576	0.202084	0.221106	0.344181	0.186364	0.365219	0.308246	0.258176	0.147316	0.232802	0.307594	0.256584	0.295267	0.200903	0.230752	0.192236	0.323826	0.215109	0.259054	0.0988141	0.292785	0.2181
0.00690907	0.211317	0.256477	0.325657	0.222955	0.217783	0.235375	0.265844	0.177133	0.206249	0.224223	0.344072	0.186536	0.363423	0.30815	0.254027	0.15113	0.231961	0.306133	0.260573	0.288718	0.203908	0.229322	0.197834	0.324551	0.210232	0.259513	0.102299	0.29228	0.229964
0.140244	0.209385	0.259959	0.325469	0.242118	0.21635	0.244421	0.265091	0.178215	0.198313	0.223158	0.342554	0.194254	0.360312	0.306776	0.25008	0.149257	0.232551	0.306461	0.261635	0.279619	0.218785	0.225743	0.195812	0.321215	0.207302	0.258903	0.096942	0.29398	0.221051
0.194179	0.214838	0.262193	0.330877	0.228047	0.217031	0.242723	0.262535	0.179099	0.203259	0.222455	0.342149	0.191791	0.359764	0.308456	0.251294	0.146416	0.231824	0.306736	0.256115	0.283306	0.206591	0.21982	0.19925	0.320917	0.211023	0.256579	0.107627	0.29019	0.21027
0.291803	0.212691	0.257844	0.328295	0.233754	0.214182	0.23723	0.261915	0.176184	0.207861	0.222565	0.344456	0.181742	0.365396	0.307452	0.25766	0.147542	0.233276	0.306793	0.254134	0.29341	0.208863	0.23002	0.199517	0.324387	0.209632	0.259011	0.0990098	0.294026	0.213493
0.0478809	0.216651	0.259367	0.328331	0.225924	0.21971	0.233748	0.26238	0.173839	0.19711	0.224381	0.34515	0.185305	0.370065	0.308524	0.249986	0.146289	0.233748	0.304661	0.26142	0.309225	0.208122	0.22857	0.19579	0.320692	0.215698	0.252064	0.0977351	0.290713	0.208368
0.020577	0.211338	0.263892	0.3257	0.224883	0.215093	0.237443	0.265578	0.173969	0.208836	0.220684	0.341641	0.178408	0.365913	0.31156	0.249342	0.145116	0.233583	0.305689	0.249973	0.28547	0.198957	0.223196	0.197133	0.32544	0.214477	0.255934	0.0941949	0.294107	0.184575
0.193925	0.219111	0.258146	0.322174	0.235035	0.217441	0.234505	0.264163	0.176674	0.199034	0.22554	0.344312	0.184618	0.367491	0.308294	0.247647	0.14965	0.231847	0.306192	0.254032	0.28892	0.203227	0.229194	0.199631	0.325727	0.211907	0.254263	0.100237	0.292071	0.238396
0.00368497	0.224424	0.25708	0.323866	0.22451	0.215232	0.23764	0.264902	0.176306	0.201394	0.221482	0.343175	0.182486	0.362194	0.306539	0.24927	0.145425	0.232709	0.301954	0.258643	0.28667	0.213959	0.227241	0.198545	0.320097	0.212448	0.259151	0.0956305	0.289055	0.23154
0.0265255	0.211455	0.259075	0.327028	0.223942	0.218628	0.232437	0.264829	0.179138	0.202931	0.224285	0.346091	0.188079	0.362184	0.305754	0.24654	0.148866	0.233215	0.300781	0.255995	0.295698	0.199071	0.226223	0.199459	0.320269	0.212326	0.254811	0.0969461	0.290454	0.204752
0.124372	0.20631	0.250273	0.327286	0.219569	0.216739	0.236174	0.265401	0.179914	0.212409	0.225485	0.344351	0.181512	0.359042	0.307393	0.24636	0.147341	0.233483	0.302924	0.256876	0.280286	0.204643	0.224814	0.196346	0.320323	0.210301	0.25607	0.0960217	0.291356	0.217787
0.0903595	0.208954	0.258207	0.327603	0.219796	0.214741	0.241616	0.265889	0.183275	0.205012	0.231383	0.344135	0.186505	0.361994	0.305353	0.245125	0.146247	0.235472	0.301444	0.256822	0.292551	0.211136	0.224011	0.188892	0.321556	0.213671	0.263218	0.102339	0.289198	0.21227
0.111091	0.219589	0.258602	0.328482	0.220599	0.219097	0.238901	0.26553	0.176584	0.203425	0.222938	0.342918	0.182056	0.3617	0.308329	0.246941	0.145366	0.232822	0.307161	0.255054	0.289235	0.207224	0.227698	0.197414	0.324049	0.21524	0.263934	0.0936788	0.292116	0.21641
0.336201	0.210147	0.253185	0.329699	0.230958	0.217181	0.246957	0.266151	0.173272	0.207811	0.224127	0.343148	0.201096	0.362611	0.308671	0.256933	0.148152	0.233259	0.307048	0.258539	0.295292	0.218889	0.228196	0.201061	0.32706	0.215266	0.254991	0.100065	0.291135	0.213834
0.111091	0.219589	0.258602	0.328482	0.220599	0.219097	0.238901	0.26553	0.176584	0.203425	0.222938	0.342918	0.182056	0.3617	0.308329	0.246941	0.145366	0.232822	0.307161	0.255054	0.289235	0.207224	0.227698	0.197414	0.324049	0.21524	0.263934	0.0936788	0.292116	0.21641
0.161572	0.206942	0.256324	0.327177	0.226492	0.212188	0.235765	0.26377	0.183307	0.208893	0.22106	0.34436	0.183867	0.363299	0.305054	0.245914	0.146366	0.233952	0.305987	0.257221	0.295124	0.191074	0.231637	0.196806	0.322469	0.214167	0.257816	0.094567	0.292087	0.234287
0.229625	0.213752	0.257872	0.327651	0.226505	0.216504	0.239037	0.266452	0.176805	0.193425	0.223454	0.342063	0.186955	0.360861	0.303297	0.249873	0.147119	0.232815	0.307298	0.257899	0.29564	0.213307	0.230063	0.197194	0.322162	0.210373	0.252905	0.0961514	0.291	0.19594
0.250301	0.209934	0.259245	0.327228	0.223694	0.217319	0.242386	0.265627	0.172347	0.203962	0.226645	0.344826	0.182849	0.363607	0.30785	0.251644	0.149048	0.235367	0.306089	0.258399	0.293732	0.202077	0.226202	0.198748	0.321367	0.210169	0.259056	0.119815	0.291665	0.225856
0.232698	0.207125	0.262217	0.324577	0.227735	0.218066	0.241686	0.265291	0.175778	0.191417	0.222441	0.34431	0.184552	0.363536	0.307944	0.247031	0.148662	0.232538	0.303817	0.258539	0.291736	0.213453	0.227322	0.200518	0.320485	0.215539	0.25051	0.0962299	0.291011	0.205196
0.0380952	0.211421	0.26015	0.32823	0.222307	0.216014	0.232901	0.264362	0.177917	0.207362	0.224776	0.344691	0.184918	0.361147	0.306546	0.248686	0.14813	0.234018	0.305535	0.257587	0.28813	0.197549	0.231341	0.197543	0.3215	0.216229	0.25434	0.0980952	0.290496	0.201749
0	0.21406	0.260849	0.325909	0.222573	0.216186	0.236121	0.262781	0.177787	0.20603	0.222695	0.344806	0.183774	0.35879	0.310419	0.243456	0.145568	0.231378	0.303405	0.253002	0.281373	0.199173	0.226147	0.195574	0.322139	0.212987	0.256166	0.0673191	0.291236	0.210951

四、完整Python代码

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/324242.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Docker】Docker容器实战部署多个Nginx实现负载均衡和高可用

文章目录 前言下载Nginx复制出配置文件第一步:启动容器 修改配置nginx-lb里的nginx.conf 启动容器启动nginx1启动nginx2启动nginx-lb 演示效果 前言 Docker下部署多个Nginx进行负载均衡,我这次实操的思路是使用三个Nginx。其中一个Nginx起负载均衡的作用…

SQL-用户管理与用户权限

🎉欢迎您来到我的MySQL基础复习专栏 ☆* o(≧▽≦)o *☆哈喽~我是小小恶斯法克🍹 ✨博客主页:小小恶斯法克的博客 🎈该系列文章专栏:重拾MySQL 🍹文章作者技术和水平很有限,如果文中出现错误&am…

运筹说 第80期 | 最小费用最大流问题

前面我们学习了图与网络分析的基础知识及经典问题,大家是否已经学会了呢?接下来小编和大家学习最后一个经典问题——最小费用最大流问题。 最小费用最大流问题是经济学和管理学中的一类典型问题。在一个网络中每段路径都有“容量”和“费用”两个限制的…

上门按摩小程序开发-类似东郊到家系统搭建-足浴养生按摩小程序定制开发完整流程+成功案例

随着现代生活节奏的加快,人们的生活压力越来越大,亚健康问题也日益突出。为了满足人们对于健康和放松的需求,上门按摩小程序应运而生。这种小程序通过提供预约按摩服务,让用户在家就能享受到专业的按摩护理,缓解疲劳&a…

PHP项目如何自动化测试

开发和测试 测试和开发具有同等重要的作用 从一开始,测试和开发就是相向而行的。测试是开发团队的一支独立的、重要的支柱力量。 测试要具备独立性 独立分析业务需求,独立配置测试环境,独立编写测试脚本,独立开发测试工具。没有…

高效视频剪辑:视频合并让视频焕然一新,添加背景音乐更动听

随着社交媒体和数字内容的普及,视频剪辑已成为一项常用的技能。除了基本的剪辑技巧外,添加合适的背景音乐也是提升视频质量的方法。下面来看云炫AI智剪的高效视频剪辑技巧——如何批量合并视频,添加动听的背景音乐。 视频合并后的效果展示&a…

JSP-概念

一、引子 很多读者可能听过JSP,并且知道这是一门过时的技术了。在Spring,SpringBoot已经成为主流的今天,笔者为什么还要介绍JSP的相关内容呢?笔者常常提到一个概念:理解一门技术,要理解这个技术为什么产生…

城乡规划怎么转型智慧智慧城市?

智慧城市不仅仅包含“城市”,智慧城市的核心是数字化。 智慧城市的概念包括:智慧医疗、智慧交通、智慧园区、智慧物流等等所有涉及到数字化管理的各行各业。 智慧城市的发展是趋势,因此城规专业从事“智慧城市”相关的工作都比较合适。 那…

Mindspore 公开课 - BERT

BERT BERT模型本质上是结合了 ELMo 模型与 GPT 模型的优势。 相比于ELMo,BERT仅需改动最后的输出层,而非模型架构,便可以在下游任务中达到很好的效果;相比于GPT,BERT在处理词元表示时考虑到了双向上下文的信息&#…

Arduino| 串口通讯、入门示例

Arduino串口通讯 为什么要做串口通讯串口通讯原理串口通讯函数字符串常用函数串口通讯示例入门示例测试串口通讯复杂指令处理 为什么要做串口通讯 串口通讯:串口通信是用来在不同电子设备之间交换数据用的技术,其实就是要实现不同电子设备之间的“通讯对…

与react的初定情素

前要: 努力打好基础才能学好它!由于我使用vue已经3年了!来学习react,所以我写的只要我自己看得懂的就行!学这我自己会与vue的语法做对比的! 目录概览 基本表达式{}列表渲染条件渲染事件的绑定组件useState …

Linux入门级常用命令学习笔记

以下命令是我跟着编程界的大佬鱼皮学习Linux时用的命令,我把它都记下来,权当作笔记,可供自己后期反复练习使用,让我们学习一下最基本的Linux命令吧。 一、Linux实战命令 在dos下 【ssh 服务器ip】可以连接服务器,输入…

HiddenDesktop:一款针对Cobalt Strike设计的HVNC隐藏桌面工具

关于HiddenDesktop HiddenDesktop是一款针对Cobalt Strike设计的HVNC隐藏桌面工具,该工具专为红队研究人员设计,支持通过远程桌面会话来与目标远程设备执行交互。 值得一提的是,该工具并没有使用到VNC协议,但却能够实现类似的效…

玖章算术NineData通过阿里云PolarDB产品生态集成认证

近日,玖章算术旗下NineData 云原生智能数据管理平台 (V1.0)正式通过了阿里云PolarDB PostgreSQL版 (V11)产品集成认证测试,并获得阿里云颁发的产品生态集成认证。 测试结果表明,玖章算术旗下NineData数据管理平台 (V1.0&#xff…

网络安全等级保护测评规划与设计

笔者单位网络结构日益复杂,应用不断增多,使信息系统面临更多的风险。同时,网络攻防技术发展迅速,攻击的技术门槛随着自动化攻击工具的应用也在不断降低,勒索病毒等未知威胁也开始泛滥。基于此,笔者单位拟进…

Redis图形界面闪退/错误2系统找不到指定文件/windows无法启动Redis/不是内部或外部命令,也不是可运行的程序

Redis图形界面闪退/错误2系统找不到指定文件/windows无法启动Redis/不是内部或外部命令,也不是可运行的程序 我遇到了以上的问题。 其实,最重要的原因是我打开不了another redis desktop mannager,就是我安装了之后,无法打开它…

基于模型的系统工程MBSE-SysML

基于模型的系统工程MBSE MBSE是一种通过构建标准模型,用于支持系统需求、分析、设计、检验与确认活动,这些活动从概念设计阶段开始,贯穿整个开发过程及后续的生命周期阶段。 MBSE能带来哪些价值 需求分析阶段 需求的标准化描述:避…

5.1 内容管理模块 - 课程预览、提交审核

内容管理模块 - 课程预览、提交审核 文章目录 内容管理模块 - 课程预览、提交审核一、课程预览1.1 需求分析1.2 freemarker 模板引擎1.2.1 Maven 坐标1.2.2 freemaker 相关配置信息1.2.3 添加模板 1.3 测试静态页面1.3.1 部署Nginx1.3.2 解决端口问题被占用问题1.3.3 配置host文…

JVM工作原理与实战(十六):运行时数据区-Java虚拟机栈

专栏导航 JVM工作原理与实战 RabbitMQ入门指南 从零开始了解大数据 目录 专栏导航 前言 一、运行时数据区 二、Java虚拟机栈 1.栈帧的组成 2.局部变量表 3.操作数栈 4.帧数据 总结 前言 JVM作为Java程序的运行环境,其负责解释和执行字节码,管理…

存储的基本架构

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 一、存储的需求背景二、自下而上存储架构总结 一、存储的需求背景 1、人的身份信息需要存储 这种信息可以用关系型数据库,例如mysql,那种表…