利用c 原生头文件完成JPEG全流程编码

骄傲一下,经过一个多月的努力,终于完成jpeg的全套编码。经验证此程序可以把摄像头yuv信号转为JPG图片。现在的程序还不完美,只能对长和宽尺寸是16倍数的信号转码。而且转码速度太慢,一帧1280×720的图片要2秒多。此程序只能对yuv420p编码。

此程序有很多重复的代码,主要是为了清晰好查错,如三分量的提取,处理等阶段可以用一个函数形式来完成,减少代码量。

说实话此程序没有实用价值,因为压缩时间太长,不可能用于摄像头的信号转换,查网络说是浮点运算太多,要用数学的方法把浮点运算转为乘法和加法的运算,所以不想再折腾了,转而去学ffmpeg。想借用它的库函数完成摄像头的信号压缩转码。目标是搞一个高速摄像头。

写了这么多博文主要是为了留存,以后想再搞又可以用上。还有把学习的思路也备份一下。

9cfc435483224fc08c19dfa9a05ca322.jpeg

下面是全套程序:



#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>   //如果直接读文件到数组,也可不用此头文件
#include <math.h>
#define PI 3.1415926

#define  pic_width   656
#define  pic_heigth  480


#define filename  "/home/wjs/Pictures/sample.yuv"
#define file_out  "/home/wjs/Pictures/wz.jpg"           //输出文件目录

static unsigned char o_bit[900000] = {};
static int to = 0;

int  main(void) {


	//-------JPEG通用量化表--------------------------------
	unsigned char lhb0[0x45] = {0xff, 0xdb, 0, 0x43, 0,
	                                16, 11, 10, 16, 24, 40, 51, 61,
	                                 12, 12, 14, 19, 26, 58, 60, 55,
	                                 14, 13, 16, 24, 40, 57, 69, 56,
	                                 14, 17, 22, 29, 51, 87, 80, 62,
	                                 18, 22, 37, 56, 68, 109, 103, 77,
	                                 24, 35, 55, 64, 81, 104, 113, 92,
	                                 49, 64, 78, 87, 103, 121, 120, 101,
	                            	72, 92, 95, 98, 112, 100, 103, 99  
		
	                 //           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

	                           };

	unsigned char lhb1[0x45] = {0xff, 0xdb, 0, 0x43, 1,
	                               17, 18, 24, 47, 99, 99, 99, 99,     //17,18,24,47
	                               18, 21, 26, 66, 99, 99, 99, 99,     //18,21,26,66,
	                               24, 26, 56, 99, 99, 99, 99, 99,      //24,26,56
	                               47, 66, 99, 99, 99, 99, 99, 99,      //47,66,
	                               99, 99, 99, 99, 99, 99, 99, 99,
	                               99, 99, 99, 99, 99, 99, 99, 99,
	                               99, 99, 99, 99, 99, 99, 99, 99,
	                               99, 99, 99, 99, 99, 99, 99, 99
	                            
	                      //      1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	                           };

	//-------JPEG通用霍夫曼表------------------------------

	unsigned char hfm0[] = {0xff, 0xc4, 0, 0x1f, 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
	                        1, 2, 3, 4, 5, 6, 7, 8, 9, 0xa, 0xb
	                       };
	unsigned char hfm1[] = { 255, 196, 0, 181, 16, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 125, 1, 2, 3, 0, 4, 17,
	                         5, 18, 33, 49, 65, 6, 19, 81, 97, 7, 34, 113, 20, 50, 129, 145, 161, 8, 35, 66, 177, 193, 21, 82, 209, 240,
	                         36, 51, 98, 114, 130, 9, 10, 22, 23, 24, 25, 26, 37, 38, 39, 40, 41, 42, 52, 53, 54, 55, 56, 57, 58, 67, 68, 69,
	                         70, 71, 72, 73, 74, 83, 84, 85, 86, 87, 88, 89, 90, 99, 100, 101, 102, 103, 104, 105, 106, 115, 116, 117, 118,
	                         119, 120, 121, 122, 131, 132, 133, 134, 135, 136, 137, 138, 146, 147, 148, 149, 150, 151, 152, 153, 154, 162,
	                         163, 164, 165, 166, 167, 168, 169, 170, 178, 179, 180, 181, 182, 183, 184, 185, 186, 194, 195, 196, 197, 198,
	                         199, 200, 201, 202, 210, 211, 212, 213, 214, 215, 216, 217, 218, 225, 226, 227, 228, 229, 230, 231, 232, 233,
	                         234, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250
	                       };

	unsigned char hfm2[] = { 255, 196, 0, 31, 1, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
	                         0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
	                       };
	unsigned char hfm3[] = {255, 196, 0, 181, 17, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2,
	                        119, 0, 1, 2, 3, 17, 4, 5, 33, 49, 6, 18, 65, 81, 7, 97, 113, 19, 34, 50, 129, 8, 20, 66, 145, 161, 177,
	                        193, 9, 35, 51, 82, 240, 21, 98, 114, 209, 10, 22, 36, 52, 225, 37, 241, 23, 24, 25, 26, 38, 39, 40, 41,
	                        42, 53, 54, 55, 56, 57, 58, 67, 68, 69, 70, 71, 72, 73, 74, 83, 84, 85, 86, 87, 88, 89, 90, 99, 100, 101,
	                        102, 103, 104, 105, 106, 115, 116, 117, 118, 119, 120, 121, 122, 130, 131, 132, 133, 134, 135, 136, 137,
	                        138, 146, 147, 148, 149, 150, 151, 152, 153, 154, 162, 163, 164, 165, 166, 167, 168, 169, 170, 178, 179,
	                        180, 181, 182, 183, 184, 185, 186, 194, 195, 196, 197, 198, 199, 200, 201, 202, 210, 211, 212, 213, 214,
	                        215, 216, 217, 218, 226, 227, 228, 229, 230, 231, 232, 233, 234, 242, 243, 244, 245, 246, 247, 248, 249,
	                        250
	                       };

	//------ali--------------------------------------
	int ali(int i, int out[2]) {      //out[1]=len  out[0]=int

		int o = -1;    //如果输出负数无意义
		char len = -1; //如果输出负数无意义

		if (i == 0) {
			len = 0;
			o = 0;
		}
		if (i == -1) {
			len = 1;
			o = 0;
		}
		if (i == 1) {
			len = 1;
			o = 1;
		}

		if ((i >= 2) && (i <= 32767)) {     //二进制位数0-16位
			for (int a = 0; a < 16; a++) {
				if ((i >= pow(2, a)) && (i < pow(2, (a + 1)))) {
					len = a + 1;
					o = i;
				}
			}
		}
		if ((i >= -32767) && (i <= -2)) {
			for (int a = 0; a < 16; a++) {
				if ((i <= -pow(2, a)) && (i > -pow(2, (a + 1)))) {
					len = a + 1;
					o = i + pow(2, (a + 1)) - 1;
				}
			}
		}

		out[1] = len;
		out[0] = o;
		return 0;
	}
	//-------------Y_DC--------------------------------
	int hfm_ydc(unsigned char  i, int out[2]) { //out[1]=len  out[0]=int

		if (i == 0) {
			out[1] = 2;
			out[0] = 0b00;
		}
		if (i == 1) {
			out[1] = 3;
			out[0] = 0b010;
		}
		if (i == 2) {
			out[1] = 3;
			out[0] = 0b011;
		}
		if (i == 3) {
			out[1] = 3;
			out[0] = 0b100;
		}
		if (i == 4) {
			out[1] = 3;
			out[0] = 0b101;
		}
		if (i == 5) {
			out[1] = 3;
			out[0] = 0b110;
		}
		if (i == 6) {
			out[1] = 4;
			out[0] = 0b1110;
		}
		if (i == 7) {
			out[1] = 5;
			out[0] = 0b11110;
		}
		if (i == 8) {
			out[1] = 6;
			out[0] = 0b111110;
		}
		if (i == 9) {
			out[1] = 7;
			out[0] = 0b1111110;
		}
		if (i == 10) {
			out[1] = 8;
			out[0] = 0b11111110;
		}
		if (i == 11) {
			out[1] = 9;
			out[0] = 0b111111110;
		}
		return 0;
	}
	//-------------UV_DC-----------------------------------
	int hfm_uvdc(unsigned char i, int out[2]) { //out[1]=len  out[0]=int
		if (i == 0) {
			out[1] = 2;
			out[0] = 0;
		}
		if (i == 1) {
			out[1] = 2;
			out[0] = 0b01;
		}
		if (i == 2) {
			out[1] = 2;
			out[0] = 0b10;
		}
		if (i == 3) {
			out[1] = 3;
			out[0] = 0b110;
		}
		if (i == 4) {
			out[1] = 4;
			out[0] = 0b1110;
		}
		if (i == 5) {
			out[1] = 5;
			out[0] = 0b11110;
		}
		if (i == 6) {
			out[1] = 6;
			out[0] = 0b111110;
		}
		if (i == 7) {
			out[1] = 7;
			out[0] = 0b1111110;
		}
		if (i == 8) {
			out[1] = 8;
			out[0] = 0b11111110;
		}
		if (i == 9) {
			out[1] = 9;
			out[0] = 0b111111110;
		}
		if (i == 10) {
			out[1] = 10;
			out[0] = 0b1111111110;
		}
		if (i == 11) {
			out[1] = 11;
			out[0] = 0b11111111110;
		}
		return 0;
	}
	//---------霍夫曼编码Y_AC-----------------------------------
	int hfm_yac(unsigned char i_0, unsigned char i_len, unsigned int out[2]) {

		//	unsigned char i_0=0xf;                      //out[1]=len  out[0]=int
		//	unsigned char i_len=0xa;

		unsigned int len;
		unsigned int o;

		unsigned char zj = i_0 * 16 + i_len; //合成一个字节

		unsigned char ws[16] = {};
		memcpy(ws, &hfm1[5], 16);

		unsigned char zh[162] = {};
		memcpy(zh, &hfm1[21], 162);

		int cx_ws, cx_b;
		unsigned char hfm[17][0x7d] = {};
		int t = 0;
		for (int a = 0; a < 16; a++) {     //把要编码的162个数按位数分为16个数组,二位一组....16位一组
			if (ws[a] == 0) {
				continue;
			}

			for (int b = 0; b < ws[a]; b++) {
				hfm[a + 1][b] = zh[t];
				t++;
			}
		}
		for (int a = 0; a < 16; a++) {       //查询输入数的位数和在所在组的顺序,组内顺序从0开始
			if (ws[a] == 0) {
				continue;
			}

			for (int b = 0; b < ws[a]; b++) {
				if (	hfm[a + 1][b] == zj) {
					cx_ws = a + 1;     //得到输入数二进制位数,根据此数到相依位数的数组查询
					cx_b = b;          //输入数在按位数分组的数组中所在的位置,从0开始
					break;
				}
			}
		}

		int o_js = 0;     //每一组的第一个数的值
		if (cx_ws == 2) {
			o_js = 0b00;
		}
		if (cx_ws == 3) {
			o_js = 0b100;
		}
		if (cx_ws == 4) {
			o_js = 0b1010;
		}
		if (cx_ws == 5) {
			o_js = 0b11010;
		}
		if (cx_ws == 6) {
			o_js = 0b111010;
		}
		if (cx_ws == 7) {
			o_js = 0b1111000;
		}
		if (cx_ws == 8) {
			o_js = 0b11111000;
		}
		if (cx_ws == 9) {
			o_js = 0b111110110;
		}
		if (cx_ws == 10) {
			o_js = 0b1111110110;
		}
		if (cx_ws == 11) {
			o_js = 0b11111110110;
		}
		if (cx_ws == 12) {
			o_js = 0b111111110100;
		}
		if (cx_ws == 15) {
			o_js = 0b111111111000000;
		}
		if (cx_ws == 16) {
			o_js = 0b1111111110000010;
		}
		len = cx_ws;
		o = o_js + cx_b;
		out[1] = len;
		out[0] = o;
		return 0;
	}

	//---------UV_AC---------------------------------

	int hfm_uvac(unsigned char i_0, unsigned char i_len, unsigned int out[2]) {

		//	unsigned char i_0=0xf;                         //out[1]=len  out[0]=int
		//	unsigned char i_len=0xa;

		unsigned int len;
		unsigned int o;

		unsigned char zj = i_0 * 16 + i_len; //合成一个字节

		unsigned char ws[16] = {};
		memcpy(ws, &hfm3[5], 16);

		unsigned  char zh[162] = {};
		memcpy(zh, &hfm3[21], 162);

		int cx_ws, cx_b;
		unsigned char hfm[17][0x7d] = {};
		int t = 0;
		for (int a = 0; a < 16; a++) {     //把要编码的162个数按位数分为16个数组,二位一组....16位一组
			if (ws[a] == 0) {
				continue;
			}

			for (int b = 0; b < ws[a]; b++) {
				hfm[a + 1][b] = zh[t];
				t++;
			}
		}
		for (int a = 0; a < 16; a++) {       //查询输入数的位数和在所在组的顺序,组内顺序从0开始
			if (ws[a] == 0) {
				continue;
			}

			for (int b = 0; b < ws[a]; b++) {
				if (	hfm[a + 1][b] == zj) {
					cx_ws = a + 1;     //得到输入数二进制位数,根据此数到相依位数的数组查询
					cx_b = b;          //输入数在按位数分组的数组中所在的位置,从0开始
					break;
				}
			}
		}

		int o_js = 0;     //每一组的第一个数的值
		if (cx_ws == 2) {
			o_js = 0b00;
		}
		if (cx_ws == 3) {
			o_js = 0b100;
		}
		if (cx_ws == 4) {
			o_js = 0b1010;
		}
		if (cx_ws == 5) {
			o_js = 0b11000;
		}
		if (cx_ws == 6) {
			o_js = 0b111000;
		}
		if (cx_ws == 7) {
			o_js = 0b1111000;
		}
		if (cx_ws == 8) {
			o_js = 0b11110110;
		}
		if (cx_ws == 9) {
			o_js = 0b111110100;
		}
		if (cx_ws == 10) {
			o_js = 0b1111110110;
		}
		if (cx_ws == 11) {
			o_js = 0b11111110110;
		}
		if (cx_ws == 12) {
			o_js = 0b111111110100;
		}
		if (cx_ws == 14) {
			o_js = 0b11111111100000;
		}
		if (cx_ws == 15) {
			o_js = 0b111111111000010;
		}
		if (cx_ws == 16) {
			o_js = 0b1111111110001000;
		}
		len = cx_ws;
		o = o_js + cx_b;
		out[1] = len;
		out[0] = o;
		return 0;
	}


//-----------FDCT()函数------------------------------------
	int fdct( unsigned char i[8][8], int o[8][8] ) {  //i 为输入   o 为参数传入的输出转换后的数据


		double s;
		double au;
		double av;

		for (int u = 0; u < 8; u++) {
			for (int v = 0; v < 8; v++) {
				for (int y = 0; y < 8; y++) {
					for (int x = 0; x < 8; x++) {
						s = s + (1.0 / 4) * (i[y][x] - 128) * cos((2 * y + 1) * u * PI / 16) * cos((2 * x + 1) * v * PI / 16);
					}
				}

				if (u == 0) {
					au = 1.0 / sqrt(2);
				} else {
					au = 1.0;
				}
				if (v == 0) {
					av = 1.0 / sqrt(2);
				} else {
					av = 1.0;
				}

				s = s * au * av;   //-30.1856
				int s1 = round(s * 100); //-3019
				s = s1 / 100.0;    //-30.19

				o[u][v] = s;       //double 转为char 类型
				s = 0;
			}
		}

		return 0;
	}
//-----------规范RLC格式---------------------
	int zl(int len, int (*i)[2], int (*o)[2]) {
		int t = 0;                      //如果中间有一次超过15个0,o的下标要加一,因为增加了(15,0)
		for (int a = 0; a < len; a++) {

			if ((a < len) && (i[a][1] >= 16) && (i[a][0] != 0)) {
				o[a + t][0] = 0;
				o[a + t][1] = 15;
				o[a + 1 + t][0] = i[a][0];
				o[a + 1 + t][1] = i[a][1] - 15;
				t++;
			}
			if ((a < len) && (i[a][1] < 16)) {
				memcpy(&(o[a + t][0]), &(i[a][0]), 8); //一行为单位复制
			}
			if ((a == len) && (i[a][0] == 0)) {
				o[a + t][0] = 0;
				o[a + t][1] = 0;
				break;
			}

		}

		return len + t;
	}

//-----------去0-----------------------------
	int q0(int i[64], int (*o)[2]) {

		int t = 0;         //输出数组序号
		int z = 0;         //计算连续的0
		o[0][1] = 0;
		o[0][0] = i[0];
		t = 1;
		for (int a = 1; a < 64; a++) {                               //  a
			if ((i[a] == 0) && (i[a + 1] == 0) && ((a + 1) < 63)) { //000001
				z++;

			}                                                        // a
			if ((i[a] == 0) && (i[a + 1] == 0) && ((a + 1) == 63)) { //0000结束
				z++;             //本次的0
				o[t][0] = 0;
				o[t][1] = z + 1; //加a+1的0
				break;           //判断完成

			}                                               //  a
			if ((i[a] == 0) && (i[a + 1] != 0)) {           //000100
				z++;                  //加上本次的一个0
				o[t][0] = i[a + 1];
				o[t][1] = z;
				z = 0;           //清0,计算下次的连续0
				t++;
				a = a + 1;

			}
			if ((i[a] != 0) && (a == 0)) { //第一个数非0
				o[t][0] = i[a];
				o[t][1] = 0;
				t++;

			}
			if ((a > 0) && (i[a] != 0) && (i[a - 1] != 0)) { //防止第3种重复读取,这种是读取连续的非0
				o[t][0] = i[a];
				o[t][1] = 0;
				t++;

			}

		}

		return t + 1;
	}

//--------Z 排序--------------------------------

	int zz(int (*i)[8], int o[64]) {
		int zb[64] = {0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6,
		              7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47,
		              55, 62, 63
		             };
		int *p = (int *)i;
		for (int a = 0; a < 64; a++) {

			o[a] = p[zb[a]];
		}

		return 0;
	}
// -----量化函数---------------
	int lh(int (*i)[8], unsigned char (*lhb)[8], int (*o)[8]) {
		for (int a = 0; a < 8; a++) {
			for (int b = 0; b < 8; b++) {
				o[a][b] = round((i[a][b]) / (lhb[a][b]));
			}
		}

		return 0;
	}


//---------编码start-------------------------------------

//---------读量化表-------------------------------
	char lh00[64] = {};                 //提取量化表
	char lh10[64] = {};

	memcpy(lh00, &lhb0[5], 64); //使用自定义量化表
	memcpy(lh10, &lhb1[5], 64);


//-----------读yuv ----------------------------------------------------------------
	FILE *f = fopen(filename, "rb");  //如用mmap 必须以读写方式打开文件
	if (f == NULL) {
		puts("filename error");
		exit(-1);
	}
	fseek(f, 0, SEEK_END);
	int len_file = ftell(f);
	fseek(f, 0, SEEK_SET);


	int fd = fileno(f);
	unsigned char *mp = mmap(NULL, len_file, PROT_READ, MAP_SHARED, fd, 0); //必须要读,写
	
	
//---------------------------------------------------------------------------------


	unsigned char yfl[pic_heigth * pic_width] = {};
	unsigned char ufl[pic_heigth * pic_width / 4 ] = {};
	unsigned char  vfl[pic_heigth * pic_width / 4 ] = {};

	for (int a = 0; a < pic_heigth * pic_width; a++) {
		yfl[a] = mp[a];
	}
	for (int a = 0; a < pic_heigth * pic_width / 4; a++) {
		ufl[a] = mp[a + pic_heigth * pic_width];
	}
	for (int a = 0; a < pic_heigth * pic_width / 4; a++) {
		vfl[a] = mp[a + pic_heigth * pic_width * 5 / 4];
	}

	//----------------------------------------------------------------------------------


	//-------Y 分割8×8----------------------------


	int yp = 0;              //输出数组序号
	unsigned char y64[pic_width * pic_heigth / 64][64] = {};   //输出数组

	for (int y = 0; y < pic_heigth; y = y + 8) { //提取左上角点的垂直数据
		for (int x = 0; x < pic_width; x = x + 8) { //提取左上角点的水平数据
			int n = 0;           //每一个数组下标取值 0-63

			for (int a = 0; a < 8; a++) {
				for (int b = 0; b < 8; b++) {
					y64[yp][n] = yfl[pic_width * (a + y) + (b + x)];
					n++;
				}
			}
			yp++;
		}

	}
	
	

	
	
	//-------U分割8×8----------------------------


	int up = 0;              //输出数组序号
	unsigned char u64[pic_width * pic_heigth / 256][64] = {}; //输出数组

	for (int y = 0; y < pic_heigth / 2; y = y + 8) { //提取左上角点的垂直数据
		for (int x = 0; x < pic_width / 2; x = x + 8) { //提取左上角点的水平数据
			int n = 0;           //每一个数组下标取值 0-63

			for (int a = 0; a < 8; a = a + 1) {
				for (int b = 0; b < 8; b = b + 1) {
					u64[up][n] = ufl[(pic_width / 2) * (a + y) + (b + x)];

					n++;
				}
			}
			up++;
		}

	}



//-------V分割8×8----------------------------


	int vp = 0;              //输出数组序号
	unsigned char v64[pic_width * pic_heigth / 256][64] = {}; //输出数组

	for (int y = 0; y < pic_heigth / 2 ; y = y + 8) { //提取左上角点的垂直数据
		for (int x = 0; x < pic_width / 2 ; x = x + 8) { //提取左上角点的水平数据
			int n = 0;           //每一个数组下标取值 0-15

			for (int a = 0; a < 8; a = a + 1) {
				for (int b = 0; b < 8; b = b + 1) {
					v64[vp][n] = vfl[(pic_width / 2) * (a + y) + (b + x)];

					n++;
				}
			}
			vp++;
		}

	}
	//------------------------------------------------------
   



	//------Y处理函数---------------------------------


	int yy(int ysc, unsigned char lh0[8][8], unsigned char y[8][8]) {


		int y_fdct[8][8] = {};
		fdct(y, y_fdct);


		int y_lh[8][8] = {};
		lh(y_fdct, lh0, y_lh);

		int y_z[64] = {};
		zz(y_lh, y_z);
  
		int y_0[64][2] = {};
		int len_y_0 = q0(y_z, y_0);
		int y_zl[64][2] = {};

		int len_y_zl = zl(len_y_0, y_0, y_zl);

		//--------Y-DC----------------------------------
		int ydc[2] = {};       //ydc[1]=len  ydc[0]=int
		int q = y_zl[0][0] - ysc; //DC 差值
		ali(q, ydc);           //处理Y_DC
		int ydc_hfm[2] = {};   //ydc_hfm[1]=len
		hfm_ydc(ydc[1], ydc_hfm);

		int ls = (ydc_hfm[0] << ydc[1]) | ydc[0]; //组合成一int

		for (int a = (ydc[1] + ydc_hfm[1]); a > 0; a--) {
			o_bit[to] = (ls & (int)pow(2, (a - 1))) >> (a - 1); //取ls 每一位数
			to++;
		}
		//-------Y-AC-------------------------------
		for (int a = 1; a < len_y_zl; a++) {
			int yac[2] = {};
			ali(y_zl[a][0], yac);              //取AC 值
			unsigned int yac_h[2] = {};
			hfm_yac(y_zl[a][1], yac[1], yac_h); //0的个数+系数位数
			int ls = (yac_h[0] << yac[1]) | yac[0];
			for (int a = (yac[1] + yac_h[1]); a > 0; a--) {
				o_bit[to] = (ls & (int)pow(2, (a - 1))) >> (a - 1); //取ls 每一位数
				to++;
			}
		}
		return y_zl[0][0];                     //返回本次的Y_DC值
	}

	unsigned char (*lh0)[8] = (unsigned char (*)[8])lh00;
	unsigned char (*lh1)[8] = (unsigned char (*)[8])lh10;    //UV 量化表转成8×8



	//------UV处理函数---------------------------------


	int uu(int usc, unsigned char lh1[8][8], unsigned char u[8][8]) {


		int u_fdct[8][8] = {};
		fdct(u, u_fdct);

		int u_lh[8][8] = {};
		lh(u_fdct, lh1, u_lh);

		int u_z[64] = {};
		zz(u_lh, u_z);

		int u_0[64][2] = {};
		int len_u_0 = q0(u_z, u_0);
		int u_zl[64][2] = {};

		int len_u_zl = zl(len_u_0, u_0, u_zl);

		//--------UV-DC----------------------------------
		int udc[2] = {};       //ydc[1]=len  ydc[0]=int
		int q = u_zl[0][0] - usc; //DC 差值
		ali(q, udc);           //处理Y_DC
		int udc_hfm[2] = {};   //ydc_hfm[1]=len
		hfm_uvdc(udc[1], udc_hfm);

		int ls = (udc_hfm[0] << udc[1]) | udc[0]; //组合成一int

		for (int a = (udc[1] + udc_hfm[1]); a > 0; a--) {
			o_bit[to] = (ls & (int)pow(2, (a - 1))) >> (a - 1); //取ls 每一位数
			to++;
		}
		//-------UV-AC-------------------------------
		for (int a = 1; a < len_u_zl; a++) {
			int uac[2] = {};
			ali(u_zl[a][0], uac);              //取AC 值
			unsigned int uac_h[2] = {};
			hfm_uvac(u_zl[a][1], uac[1], uac_h); //0的个数+系数位数
			int ls = (uac_h[0] << uac[1]) | uac[0];
			for (int a = (uac[1] + uac_h[1]); a > 0; a--) {
				o_bit[to] = (ls & (int)pow(2, (a - 1))) >> (a - 1); //取ls 每一位数
				to++;
			}
		}
		return u_zl[0][0];                     //返回本次的Y_DC值
	}



	int vv(int vsc, unsigned char lh1[8][8], unsigned char v[8][8]) {


		int v_fdct[8][8] = {};
		fdct(v, v_fdct);

		int v_lh[8][8] = {};
		lh(v_fdct, lh1, v_lh);

		int v_z[64] = {};
		zz(v_lh, v_z);

		int v_0[64][2] = {};
		int len_v_0 = q0(v_z, v_0);
		int v_zl[64][2] = {};

		int len_v_zl = zl(len_v_0, v_0, v_zl);

		//--------UV-DC----------------------------------
		int vdc[2] = {};       //ydc[1]=len  ydc[0]=int
		int q = v_zl[0][0] - vsc; //DC 差值
		ali(q, vdc);           //处理Y_DC
		int vdc_hfm[2] = {};   //ydc_hfm[1]=len
		hfm_uvdc(vdc[1], vdc_hfm);

		int ls = (vdc_hfm[0] << vdc[1]) | vdc[0]; //组合成一int

		for (int a = (vdc[1] + vdc_hfm[1]); a > 0; a--) {
			o_bit[to] = (ls & (int)pow(2, (a - 1))) >> (a - 1); //取ls 每一位数
			to++;
		}
		//-------UV-AC-------------------------------
		for (int a = 1; a < len_v_zl; a++) {
			int vac[2] = {};
			ali(v_zl[a][0], vac);              //取AC 值
			unsigned int vac_h[2] = {};
			hfm_uvac(v_zl[a][1], vac[1], vac_h); //0的个数+系数位数
			int ls = (vac_h[0] << vac[1]) | vac[0];
			for (int a = (vac[1] + vac_h[1]); a > 0; a--) {
				o_bit[to] = (ls & (int)pow(2, (a - 1))) >> (a - 1); //取ls 每一位数
				to++;
			}
		}
		return v_zl[0][0];                     //返回本次的Y_DC值
	}
//----------------------------------------------------------------
	int udiff = 0;
	int vdiff = 0;
	int ydiff = 0;
	//---------Y 排序----------------------------------   //第一个MCU y01 y02 y10 y11 u01 v01
	int yw[pic_heigth*pic_width/64]={};
	int wn=0;
	for(int y=0;y<pic_heigth/8;y=y+2){
		for(int x=0;x<pic_width/8;x=x+2){
			for(int b=0;b<2;b++){
				for(int a=0;a<2;a++){
			       yw[wn]=(y+b)*pic_width/8+x+a;
					wn++;
				}
			}
		}
	}

	//---------MCU---------------------------------

	for (int a = 0; a < pic_width * pic_heigth / 256; a++) {    //MCU=4Y+1U+1V

		for (int b = 0; b < 4; b++) {
			unsigned char y1[8][8] = {};
			memcpy(y1, &(y64[yw[a * 4 + b]][0]), 64);
			ydiff = yy(ydiff, lh0, y1);
		}

		unsigned char u1[8][8] = {};
		memcpy(u1, &(u64[a][0]), 64);
		udiff = uu(udiff, lh1, u1);
		unsigned char v1[8][8] = {};
		memcpy(v1, &(v64[a][0]), 64);
		vdiff = vv(vdiff, lh1, v1);

	}

	//-------生成jpeg文件-----------------------------
	unsigned char h1 = pic_heigth / 256;
	unsigned char h2 = pic_heigth % 256;
	unsigned char l1 = pic_width / 256;
	unsigned char l2 = pic_width % 256;

	unsigned char zhen[] = {255, 192, 0, 17, 8, h1, h2, l1, l2, 3, 1, 0x22, 0, 2, 0x11, 1, 3, 0x11, 1 }; //帧头
	unsigned char sos[] = {255, 218, 0, 12, 3, 1, 0, 2, 17, 3, 17, 0, 63, 0 };   //比特流开始

	unsigned char jp[900000] = {};

	jp[0] = 0xff;                    //jpeg开始
	jp[1] = 0xd8;
	int k = 2;
	memcpy(&jp[k], lhb0, (2 + 0x43));   //量化表
	k = k + 2 + 0x43;
	memcpy(&jp[k], lhb1, (2 + 0x43));
	k = k + 2 + 0x43;
	memcpy(&jp[k], zhen, (2 + 0x11));   //帧全局
	k = k + 2 + 0x11;
	memcpy(&jp[k], hfm0, (2 + 0x1f));   //霍夫曼表
	k = k + 2 + 0x1f;
	memcpy(&jp[k], hfm1, (2 + 0xb5));
	k = k + 2 + 0xb5;
	memcpy(&jp[k], hfm2, (2 + 0x1f));
	k = k + 2 + 0x1f;
	memcpy(&jp[k], hfm3, (2 + 0xb5));
	k = k + 2 + 0xb5;
	memcpy(&jp[k], sos, (2 + 0xc));      //比特流开始
	k = k + 2 + 0xc;

	for (int a = 0; a < 8 - (to % 8); a++) {
		o_bit[to + a] = 1;        //比特流凑成8的倍数,不够补1
	}
	to = to + 8 - to % 8;
    
	for (int a = 0; a < to; a = a + 8) { //比特流转成字节
		unsigned char zz = o_bit[a] * 128 + o_bit[a + 1] * 64 + o_bit[a + 2] * 32 + o_bit[a + 3] * 16 + o_bit[a + 4] * 8 + o_bit[a + 5] * 4 + o_bit[a + 6] * 2 + o_bit[a + 7];
		if (zz == 0xff) {
			jp[k] = zz;
			jp[k = k + 1] = 0;      //0xff 后面跟0

		} else {
			jp[k] = zz;
		}
		k = k + 1;
	}

	jp[k = k + 1] = 0xff;          //jpeg 结束
	jp[k = k + 1] = 0xd9;


	FILE *fz = fopen(file_out, "w+b");
	fwrite(jp, k, 1, fz);
	fclose(fz);

	puts("编码over");

	return 0;
}










 

 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/323240.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

静态路由高级特性(HCIA)

目录 一、静态路由高级特性 1、路由条目六要素 2、路由分类 3、静态路由配置命令 &#xff08;1&#xff09;静态路由中下一跳MA和P2P区别 4、静态路由加路由表条件 5、permanent特性 二、路由冗余和负载 1、控制层面control plane 2、数据层面data plane 路由操控精髓&#xf…

测试用例的设计(超详细总结)

&#x1f345; 视频学习&#xff1a;文末有免费的配套视频可观看 &#x1f345; 关注公众号【互联网杂货铺】&#xff0c;回复 1 &#xff0c;免费获取软件测试全套资料 1. 测试用例的概念 软件测试人员向被测试系统提供的一组数据的集合&#xff0c;包括 测试环境、测试步骤、…

深入探究Python Collections模块:高效数据结构解决方案

前言 这几天刷leetcode题时&#xff0c;看到题解中有这样一行代码collections.defaultdict(list)&#xff0c;不明白是啥意思&#xff0c;平时开发的脚本中未遇到&#xff0c;借着这个机会&#xff0c;学习一下collections模块的用法。 collections 这个模块实现了一些专门化…

Overleaf Docker编译复现计划

Overleaf Docker编译复现计划 Overleaf Pro可以支持不同年份的Latex镜像自由选择编译&#xff0c;这实在是一个让人看了心痒痒的功能。但是很抱歉&#xff0c;这属于Pro付费功能。但是我研究了一下&#xff0c;发现其实和Docker编译相关的代码&#xff0c;社区版的很多代码都没…

使用Dockerfile构建镜像的详细指南

目录 前言 一、什么是 Dockerfile 二、使用 Dockerfile 定制镜像 开始构建镜像 上下文路径 三、指令详解 四、构建阿里云仓库 前言 Docker是一种流行的容器化平台&#xff0c;可以帮助开发人员和运维团队更轻松地构建、发布和运行应用程序。在Docker中&#xff0c;镜像是…

捷捷微电突发涨价函,Trench MOS产品线上调5%-10% | 百能云芯

近日&#xff0c;国产功率半导体厂商捷捷微电发布了一份《价格调整函》&#xff0c;宣布自2024年1月15日起&#xff0c;将对公司Trench MOS产品线的单价进行上调&#xff0c;上调幅度为5%-10%。 据悉&#xff0c;调整前已下的订单将继续按照原有单价和数量履行&#xff0c;而新…

java实现AES256对称加解密工具类

一、引入依赖包 引入相关依赖包 <dependency><groupId>org.bouncycastle</groupId><artifactId>bcprov-jdk15on</artifactId><version>1.70</version> </dependency> <!--lombok用于简化实体类开发--> <dependency&g…

Unity寻路A星算法

文章目录 实现步骤概览&#xff1a; 计算移动成本1. **定义移动成本函数**&#xff1a;2. **考虑不同类型的格子**&#xff1a;3. **动态调整成本**&#xff1a;4. **实际应用**&#xff1a; 优先级队列1. **初始化**&#xff1a;2. **节点评估**&#xff1a;3. **更新节点状态…

spring boot学习第八篇:通过spring boot、jedis实现秒单

参考&#xff1a;Redis实现分布式锁的7种方案 - 知乎 1、 准备数据库表&#xff0c;如下SQL表示库存表&#xff0c;有主键ID和库存数量字段 CREATE TABLE t_stock (id bigint(20) NOT NULL AUTO_INCREMENT,quantity bigint(20) NOT NULL,PRIMARY KEY (id) ) ENGINEInnoDB DEF…

未来气膜体育馆的发展趋势是什么?

未来气膜体育馆的发展趋势是多方面的&#xff0c;以下是其中几个方面的趋势。 起初&#xff0c;随着人们对体育运动的需求不断增加&#xff0c;气膜体育馆的建设和使用将成为一种趋势。气膜体育馆具有灵活性和可移动性的特点&#xff0c;可以快速搭建和拆除&#xff0c;能够适…

TOP 10 屏幕录制软件工具,可帮您轻松录制视频!

随着越来越多的人远程工作和学习&#xff0c;对可靠、高效的屏幕录制工具的需求变得越来越重要。屏幕录制已成为电子学习、游戏和视频创作的重要组成部分。然而&#xff0c;有这么多可用的屏幕录制工具&#xff0c;选择合适的工具可能具有挑战性。为了帮助您节省搜索时间和精力…

案例127:基于微信小程序的预约挂号系统

文末获取源码 开发语言&#xff1a;Java 框架&#xff1a;SSM JDK版本&#xff1a;JDK1.8 数据库&#xff1a;mysql 5.7 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.5.4 小程序框架&#xff1a;uniapp 小程序开发软件&#xff1a;HBuilder X 小程序…

如何去开发直播电商系统小程序

明确你的直播电商系统的功能和特性&#xff0c;包括用户注册、商品展示、购物车、支付结算、直播功能、评论互动等。根据需求确定系统的基本架构和主要模块。 技术选型&#xff1a;选择适合你的直播电商系统的技术栈。考虑前端框架&#xff08;如React、Vue.js&#xff09;、后…

基于等效消耗最小(ECMS)的电氢综合能源系统能量管理策略Simulink模型

0. 前言 常见的EMS控制策略为基于状态机&#xff08;State Machine Control&#xff09;、基于等效消耗最小&#xff08;Equivalent Consumption Minimization Strategy&#xff0c;ECMS&#xff09;及调度控制模式。本文着重介绍前两种&#xff0c;针对第一种控制策略可参考模…

Unity Urp 渲染管线 创建透明材质球

按照以上方式设置后就可以得到一个透明的材质球 Tips&#xff1a;Blending mode &#xff1a; alpha 和 Blending mode &#xff1a; additive都是完全透明效果具体差异暂时不知道

iis配置asp网站

1.安装IIS的ASP win7和win10都是一样的 下安装IIS时ASP一般被默认不选中的状态&#xff0c;因此需要打开IIS检查功能视图栏中是否存在ASP选项&#xff0c;若没有则需要从控制面板->程序和 功能->打开或关闭Windows功能->Internet信息服务->万维网服务->应用程序…

数据结构与算法:快速排序

数据结构与算法&#xff1a;快速排序 快速排序荷兰国旗问题霍尔版本递归优化小区间优化 PartSort优化三数取中 挖坑法前后指针法 非递归法 快速排序 荷兰国旗问题 想要理解快速排序&#xff0c;就先理解这个问题&#xff1a; [LeetCode75.颜色分类] 荷兰国旗是由红白蓝三色组…

低代码平台,新型应用程序开发神器

目前低代码平台如火如荼。这一新兴技术为企业提供了一种高效、灵活、快速开发应用程序的方法&#xff0c;并在短时间内取得了巨大成功。然而&#xff0c;我们不得不面对低代码平台的优劣以及其所带来的挑战。本文将深入探讨低代码平台在不同情况下的优劣势&#xff0c;并与您分…

Qt 国产嵌入式操作系统实现文字转语音功能(TTS)

1.简介 本示例使用的CPU&#xff1a;rk3588。 操作系统&#xff1a;kylin V10 架构&#xff1a;aarch64 在Windows端&#xff0c;我们很容易想到使用Qt自带的类QTextToSpeech来实现文字转语音功能&#xff0c;Qt版本得在5.11.0以上才支持。但是在嵌入式平台&#xff0c;尤其…

HubSpot社交媒体整合的好处有哪些?

HubSpot的社交媒体整合提供了许多好处&#xff0c;有助于用户更好地管理和优化其社交媒体活动。以下是一些使用HubSpot社交媒体整合的好处&#xff1a; 集中管理&#xff1a; 用户可以在HubSpot平台上集中管理多个社交媒体账户&#xff0c;无需切换到不同的平台。这简化了社交媒…