C++力扣题目77--组合

给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。

你可以按 任何顺序 返回答案。

示例 1:

输入:n = 4, k = 2
输出:
[
  [2,4],
  [3,4],
  [2,3],
  [1,2],
  [1,3],
  [1,4],
]

示例 2:

输入:n = 1, k = 1
输出:[[1]]

提示:

  • 1 <= n <= 20
  • 1 <= k <= n

思路

本题是回溯法的经典题目。

直接的解法当然是使用for循环,例如示例中k为2,很容易想到 用两个for循环,这样就可以输出 和示例中一样的结果。

代码如下:

int n = 4;
for (int i = 1; i <= n; i++) {
    for (int j = i + 1; j <= n; j++) {
        cout << i << " " << j << endl;
    }
}

输入:n = 100, k = 3 那么就三层for循环,代码如下:

int n = 100;
for (int i = 1; i <= n; i++) {
    for (int j = i + 1; j <= n; j++) {
        for (int u = j + 1; u <= n; n++) {
            cout << i << " " << j << " " << u << endl;
        }
    }
}

如果n为100,k为50呢,那就50层for循环,是不是开始窒息

此时就会发现虽然想暴力搜索,但是用for循环嵌套连暴力都写不出来!

咋整?

回溯搜索法来了,虽然回溯法也是暴力,但至少能写出来,不像for循环嵌套k层让人绝望。

那么回溯法怎么暴力搜呢?

上面我们说了要解决 n为100,k为50的情况,暴力写法需要嵌套50层for循环,那么回溯法就用递归来解决嵌套层数的问题

递归来做层叠嵌套(可以理解是开k层for循环),每一次的递归中嵌套一个for循环,那么递归就可以用于解决多层嵌套循环的问题了

此时递归的层数大家应该知道了,例如:n为100,k为50的情况下,就是递归50层。

一些同学本来对递归就懵,回溯法中递归还要嵌套for循环,可能就直接晕倒了!

如果脑洞模拟回溯搜索的过程,绝对可以让人窒息,所以需要抽象图形结构来进一步理解。

我们在关于回溯算法,你该了解这些! (opens new window)中说到回溯法解决的问题都可以抽象为树形结构(N叉树),用树形结构来理解回溯就容易多了

那么我把组合问题抽象为如下树形结构:

77.组合

可以看出这棵树,一开始集合是 1,2,3,4, 从左向右取数,取过的数,不再重复取。

第一次取1,集合变为2,3,4 ,因为k为2,我们只需要再取一个数就可以了,分别取2,3,4,得到集合[1,2] [1,3] [1,4],以此类推。

每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围

图中可以发现n相当于树的宽度,k相当于树的深度

那么如何在这个树上遍历,然后收集到我们要的结果集呢?

图中每次搜索到了叶子节点,我们就找到了一个结果

相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。

在关于回溯算法,你该了解这些! (opens new window)中我们提到了回溯法三部曲,那么我们按照回溯法三部曲开始正式讲解代码了。

#回溯法三部曲

  • 递归函数的返回值以及参数

在这里要定义两个全局变量,一个用来存放符合条件单一结果,一个用来存放符合条件结果的集合。

代码如下:

vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件结果

其实不定义这两个全局变量也是可以的,把这两个变量放进递归函数的参数里,但函数里参数太多影响可读性,所以我定义全局变量了。

函数里一定有两个参数,既然是集合n里面取k个数,那么n和k是两个int型的参数。

然后还需要一个参数,为int型变量startIndex,这个参数用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。

为什么要有这个startIndex呢?

建议在77.组合视频讲解 (opens new window)中,07:36的时候开始听,startIndex 就是防止出现重复的组合

从下图中红线部分可以看出,在集合[1,2,3,4]取1之后,下一层递归,就要在[2,3,4]中取数了,那么下一层递归如何知道从[2,3,4]中取数呢,靠的就是startIndex。

77.组合2

所以需要startIndex来记录下一层递归,搜索的起始位置。

那么整体代码如下:

vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件单一结果
void backtracking(int n, int k, int startIndex)

  • 回溯函数终止条件

什么时候到达所谓的叶子节点了呢?

path这个数组的大小如果达到k,说明我们找到了一个子集大小为k的组合了,在图中path存的就是根节点到叶子节点的路径。

如图红色部分:

77.组合3

此时用result二维数组,把path保存起来,并终止本层递归。

所以终止条件代码如下:

if (path.size() == k) {
    result.push_back(path);
    return;
}

  • 单层搜索的过程

回溯法的搜索过程就是一个树型结构的遍历过程,在如下图中,可以看出for循环用来横向遍历,递归的过程是纵向遍历。

77.组合1

如此我们才遍历完图中的这棵树。

for循环每次从startIndex开始遍历,然后用path保存取到的节点i。

代码如下:

for (int i = startIndex; i <= n; i++) { // 控制树的横向遍历
    path.push_back(i); // 处理节点
    backtracking(n, k, i + 1); // 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始
    path.pop_back(); // 回溯,撤销处理的节点
}

可以看出backtracking(递归函数)通过不断调用自己一直往深处遍历,总会遇到叶子节点,遇到了叶子节点就要返回。

backtracking的下面部分就是回溯的操作了,撤销本次处理的结果。

关键地方都讲完了,组合问题C++完整代码如下:

class Solution {
private:
    vector<vector<int>> result; // 存放符合条件结果的集合
    vector<int> path; // 用来存放符合条件结果
    void backtracking(int n, int k, int startIndex) {
        if (path.size() == k) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i <= n; i++) {
            path.push_back(i); // 处理节点
            backtracking(n, k, i + 1); // 递归
            path.pop_back(); // 回溯,撤销处理的节点
        }
    }
public:
    vector<vector<int>> combine(int n, int k) {
        result.clear(); // 可以不写
        path.clear();   // 可以不写
        backtracking(n, k, 1);
        return result;
    }
};


 

  • 时间复杂度: O(n * 2^n)
  • 空间复杂度: O(n)

还记得我们在关于回溯算法,你该了解这些! (opens new window)中给出的回溯法模板么?

如下:

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

对比一下本题的代码,是不是发现有点像! 所以有了这个模板,就有解题的大体方向,不至于毫无头绪。

#总结

组合问题是回溯法解决的经典问题,我们开始的时候给大家列举一个很形象的例子,就是n为100,k为50的话,直接想法就需要50层for循环。

从而引出了回溯法就是解决这种k层for循环嵌套的问题。

然后进一步把回溯法的搜索过程抽象为树形结构,可以直观的看出搜索的过程。

接着用回溯法三部曲,逐步分析了函数参数、终止条件和单层搜索的过程。

#剪枝优化

我们说过,回溯法虽然是暴力搜索,但也有时候可以有点剪枝优化一下的。

在遍历的过程中有如下代码:

for (int i = startIndex; i <= n; i++) {
    path.push_back(i);
    backtracking(n, k, i + 1);
    path.pop_back();
}

这个遍历的范围是可以剪枝优化的,怎么优化呢?

来举一个例子,n = 4,k = 4的话,那么第一层for循环的时候,从元素2开始的遍历都没有意义了。 在第二层for循环,从元素3开始的遍历都没有意义了。

这么说有点抽象,如图所示:

77.组合4

图中每一个节点(图中为矩形),就代表本层的一个for循环,那么每一层的for循环从第二个数开始遍历的话,都没有意义,都是无效遍历。

所以,可以剪枝的地方就在递归中每一层的for循环所选择的起始位置

如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了

注意代码中i,就是for循环里选择的起始位置。

for (int i = startIndex; i <= n; i++) {

接下来看一下优化过程如下:

  1. 已经选择的元素个数:path.size();

  2. 还需要的元素个数为: k - path.size();

  3. 在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历

为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。

举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。

从2开始搜索都是合理的,可以是组合[2, 3, 4]。

这里大家想不懂的话,建议也举一个例子,就知道是不是要+1了。

所以优化之后的for循环是:

for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) // i为本次搜索的起始位置

优化后整体代码如下:

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(int n, int k, int startIndex) {
        if (path.size() == k) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) { // 优化的地方
            path.push_back(i); // 处理节点
            backtracking(n, k, i + 1);
            path.pop_back(); // 回溯,撤销处理的节点
        }
    }
public:

    vector<vector<int>> combine(int n, int k) {
        backtracking(n, k, 1);
        return result;
    }
};

#剪枝总结

本篇我们准对求组合问题的回溯法代码做了剪枝优化,这个优化如果不画图的话,其实不好理解,也不好讲清楚。

所以我依然是把整个回溯过程抽象为一棵树形结构,然后可以直观的看出,剪枝究竟是剪的哪里。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/322982.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2024云渲染,渲染农场带给三维建模行业的影响

在电影和电视的CG特效制作中&#xff0c;三维建模技术是核心组成部分&#xff0c;因为它们能够创造出既细致又引人注目的场景和角色。三维建模和渲染软件等功能的也在日益强大&#xff0c;建模艺术家们可以创作出更加逼真的环境、栩栩如生的人物发丝、动人心弦的光照效果和栩栩…

Nginx设置域名转发到服务器指定的端口

&#x1f341; 作者&#xff1a;知识浅谈&#xff0c;CSDN签约讲师&#xff0c;CSDN博客专家&#xff0c;华为云云享专家&#xff0c;阿里云专家博主 &#x1f4cc; 擅长领域&#xff1a;全栈工程师、爬虫、ACM算法 &#x1f492; 公众号&#xff1a;知识浅谈 &#x1f525;网站…

Docker 如何安装 MySQL 并实现远程连接

Hello各位小伙伴们大家好&#xff01;我是咕噜铁蛋&#xff01;随着云计算和容器化技术的兴起&#xff0c;Docker 已经成为现代软件开发的核心工具之一。它提供了一种轻量级、可移植、自包含的部署方式&#xff0c;使得开发人员可以更加便捷地构建、测试和发布应用程序。而 MyS…

机器人制作开源方案 | 智能循迹避障小车

作者&#xff1a;刘元青、邹海峰、付志伟、秦怀远、牛文进 单位&#xff1a;哈尔滨信息工程学院 指导老师&#xff1a;姚清元 智能小车是移动式机器人的重要组成部分&#xff0c;而移动机器人不仅能够在经济、国防、教育、文化和生活中起到越来越大的作用&#xff0c;也是研究…

Element UI CascaderPanel级联组件使用和踩坑总结

Element UI CascaderPanel级联组件使用和踩坑总结 问题背景 需求中需要用到Element UI的 CascaderPanel组件&#xff0c;并且支持多选&#xff0c;定制化需求&#xff0c;比如某节点被选择&#xff0c;等价于该节点下面所有子节点都被选择&#xff0c; CascaderPanel组件返回…

K6 性能测试教程:常用功能 - HTTP 请求,指标和检查

这篇文章详细介绍了 K6 中的 HTTP 请求&#xff08;http request&#xff09;功能&#xff0c;解析了常用的性能指标和检查功能。通过 HTTP 请求模拟用户行为&#xff0c;了解性能指标以评估系统响应。文章还深入讲解了如何配置和执行检查&#xff0c;确保性能符合预期标准。无…

什么是技术架构?架构和框架之间的区别是什么?怎样去做好架构设计?(一)

什么是技术架构?架构和框架之间的区别是什么?怎样去做好架构设计?(一)。 在软件行业,对于什么是架构,都有很多的争论,每个人都有自己的理解。在不同的书籍上, 不同的作者, 对于架构的定义也不统一, 角度不同, 定义不同。 一、架构是什么 Linux 有架构,MySQL 有架构,J…

基于dinoV2分类模型修改

前言 dinoV2已经发布有一段时间了&#xff0c;faecbook豪言直接说前面的结构我们都不需要进行修改&#xff0c;只需要修改最后的全连接层就可以达到一个很好的效果。我们激动的揣摸了下自己激动的小手已经迫不及待了&#xff0c;这里我使用dinoV2进行了实验&#xff0c;来分享…

7.3 数据库的基本查询

数据库的基本查询 1. 提要2. 简单查询3. 高级查询3.1 数据分页_limit3.2 排序_order by3.3 查询去重_distinct 4. 条件查询 1. 提要 2. 简单查询 3. 高级查询 3.1 数据分页_limit 3.2 排序_order by 3.3 查询去重_distinct 4. 条件查询

“与辉同行”首秀金额过亿,一个东方甄选拆出无数个董宇辉?

董宇辉又爆了&#xff01; 小作文风波后&#xff0c;董宇辉不仅摇身一变成东方甄选新股东&#xff0c;还自立门户成立了新直播间“与辉同行”。 首秀当天在抖音平台正式开播&#xff0c;首秀就创下了惊人的成绩&#xff1a;直播间人气高达1.2亿&#xff0c;销售额超过1.1亿&a…

MongoDB Compass 的教程

第一步&#xff1a;建立连接 点击Save&Connect 增加数据库&#xff1a; 填写数据库名字和文档名字并点击Create Database 删除文档&#xff1a; 创建文档&#xff1a; 插入文档数据 {Id:1001,name:"cyl",age:21} 插入成功&#xff1a; 更改原有数据 删除原有数据…

【LeetCode】202. 快乐数(简单)——代码随想录算法训练营Day06

题目链接&#xff1a;202. 快乐数 题目描述 编写一个算法来判断一个数 n 是不是快乐数。 「快乐数」 定义为&#xff1a; 对于一个正整数&#xff0c;每一次将该数替换为它每个位置上的数字的平方和。然后重复这个过程直到这个数变为 1&#xff0c;也可能是 无限循环 但始终…

Multimodal Contrastive Training for Visual Representation Learning

parameterize the image encoder as f i q _{iq} iq​ query feature q i i _{ii} ii​&#xff0c;key feature k i i _{ii} ii​ parameterize the textual encoder as f c q ( ⋅ ; Θ q , Φ c q ) f_{cq}(; Θ_q, Φ_{cq}) fcq​(⋅;Θq​,Φcq​)&#xff0c;momentum …

西贝柳斯音乐记谱软件Avid Sibelius Ultimate 2023中文激活版

Avid Sibelius(西贝柳斯终极解锁版) 是一款记谱软件&#xff0c;从有抱负的作曲家和词曲作者到教师和学生&#xff0c;任何人都可以快速轻松地开始创作和分享音乐。对于那些还不熟悉使用符号软件的人来说&#xff0c;直观的界面将引导您完成整个过程。磁性布局可防止对象相互碰…

API可视化编排如何实现

企业随着前后端分离架构、微服务架构、中台战略、产业互联互通的实施必将产生大量的各种协议的API服务&#xff0c;API将成为企业的数字化资产且API会越来越多&#xff0c; API服务之间的相互调用和依赖情况也随之越来越多和复杂。业务系统与业务系统之间、关联企业之间的API都…

【mars3d】 graphic.bindPopup(inthtml).openPopup()无需单击小车,即可在地图上自动激活弹窗的效果。

实现效果&#xff1a;new mars3d.graphic.FixedRoute({无需单击小车&#xff0c;即可在地图上实现默认打开弹窗的激活效果。↓↓↓↓↓↓↓↓ 相关链接说明&#xff1a; 1.popup的示例完全开源&#xff0c;可参考&#xff1a;功能示例(Vue版) | Mars3D三维可视化平台 | 火星科…

谷粒商城篇章8 ---- P236-P247 ---- 购物车【分布式高级篇五】

目录 1 环境搭建 1.1 新建购物车服务模块gulimall-cart 1.2 购物车服务相关配置 1.2.1 pom.xml 1.2.2 yml配置 1.2.2.1 application.yml配置 1.2.2.2 bootstrap.yml配置 1.2.3 主类 1.3 SwitchHosts增加配置 1.4 网关配置 1.5 整合SpringSession 1.5.1 session数据…

如何使用LightPicture+cpolar搭建个人云图床随时随地公网访问

文章目录 1.前言2. Lightpicture网站搭建2.1. Lightpicture下载和安装2.2. Lightpicture网页测试2.3.cpolar的安装和注册 3.本地网页发布3.1.Cpolar云端设置3.2.Cpolar本地设置 4.公网访问测试5.结语 1.前言 现在的手机越来越先进&#xff0c;功能也越来越多&#xff0c;而手机…

selenium 做 Web 自动化,鼠标当然也要自动化!

我们在做 Web 自动化的时候&#xff0c;有时候页面的元素不需要我们点击&#xff0c;值需要把鼠标移动上去就能展示各种信息。这个时候我们可以通过操作鼠标来实现&#xff0c;接下来我们来讲一下使用 selenium 做 Web 自动化的时候如何来操作鼠标。鼠标操作&#xff0c;我们可…

接口自动化测试难点:数据库验证解决方案

接口自动化中的数据库验证&#xff1a;确保数据的一致性和准确性 接口自动化测试是现代软件开发中不可或缺的一环&#xff0c;而数据库验证则是确保接口返回数据与数据库中的数据一致性的重要步骤。本文将介绍接口自动化中的数据库验证的原理、步骤以及示例代码&#xff0c;帮…