【现代密码学】笔记 补充7-- CCA安全与认证加密《introduction to modern cryphtography》

【现代密码学】笔记7-- CCA安全与认证加密《introduction to modern cryphtography》

  • 写在最前面
  • 7 CCA安全与认证加密

写在最前面

主要在 哈工大密码学课程 张宇老师课件 的基础上学习记录笔记。

内容补充:骆婷老师的PPT
《introduction to modern cryphtography》–Jonathan Katz, Yehuda Lindell(现代密码学——原理与协议)中相关章节
密码学复习笔记 这个博主好有意思

初步笔记,如有错误请指正

快速补充一些密码相关的背景知识


请添加图片描述

7 CCA安全与认证加密

  1. 本节学习用于抵抗CCA攻击的加密方案以及同时保证通信机密性和真实性的认证加密方案。

  2. 目录:CCA安全加密,认证加密,确定性加密,密钥派生函数。

  3. 回顾CCA不可区分实验

    • CCA不可区分实验 P r i v K A , Π c c a ( n ) \mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi}(n) PrivKA,Πcca(n):
      1. 挑战者生成密钥 k ← G e n ( 1 n ) k \gets \mathsf{Gen}(1^n) kGen(1n);(为了下一步的预言机)
      2. A \mathcal{A} A 被给予输入 1 n 1^n 1n 和对加密函数 E n c k ( ⋅ ) \mathsf{Enc}_k(\cdot) Enck()和解密函数 D e c k ( ⋅ ) \mathsf{Dec}_k(\cdot) Deck()预言机访问(oracle access) A E n c k ( ⋅ ) \mathcal{A}^{\mathsf{Enc}_k(\cdot)} AEnck() A D e c k ( ⋅ ) \mathcal{A}^{\mathsf{Dec}_k(\cdot)} ADeck(),输出相同长度 m 0 , m 1 m_0, m_1 m0,m1
      3. 挑战者生成随机比特 b ← { 0 , 1 } b \gets \{0,1\} b{0,1},将挑战密文 c ← E n c k ( m b ) c \gets \mathsf{Enc}_k(m_b) cEnck(mb) 发送给 A \mathcal{A} A
      4. A \mathcal{A} A 继续对除了挑战密文 c c c之外的预言机的访问,输出 b ′ b' b;如果 b ′ = b b' = b b=b,则 A \mathcal{A} A成功 P r i v K A , Π c c a = 1 \mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi}=1 PrivKA,Πcca=1,否则 0。
    • 定义:一个加密方案是CCA安全的,如果实验成功的概率与1/2之间的差异是可忽略的。
  4. 消息传递方案

    • 我们先不直接处理CCA安全,而是研究一个比CCA更安全的通信场景,其中引入了之前学习的真实性要求;
    • CCA安全与消息的真实性有关,下面学习同时保护消息机密性和真实性的消息传递方案。
    • 密钥生成(Key-generation) 算法输出 k ← G e n ′ ( 1 n ) k \gets \mathsf{Gen'}(1^n) kGen(1n). k = ( k 1 , k 2 ) k = (k_1,k_2) k=(k1,k2). k 1 ← G e n E ( 1 n ) k_1 \gets \mathsf{Gen}_E(1^n) k1GenE(1n), k 2 ← G e n M ( 1 n ) k_2 \gets \mathsf{Gen}_M(1^n) k2GenM(1n).
    • 消息传递(Message transmission )算法由 E n c k 1 ( ⋅ ) \mathsf{Enc}_{k_1}(\cdot) Enck1() M a c k 2 ( ⋅ ) \mathsf{Mac}_{k_2}(\cdot) Mack2() 生成,输出 c ← E n c M a c ′ k 1 , k 2 ( m ) c \gets \mathsf{EncMac'}_{k_1,k_2}(m) cEncMack1,k2(m).
    • 解密(Decryption)算法由 D e c k 1 ( ⋅ ) \mathsf{Dec}_{k_1}(\cdot) Deck1() V r f y k 2 ( ⋅ ) \mathsf{Vrfy}_{k_2}(\cdot) Vrfyk2() 生成,输出 m ← D e c k 1 , k 2 ′ ( c ) m \gets \mathsf{Dec}'_{k_1,k_2}(c) mDeck1,k2(c) ⊥ \bot .
    • 正确性需求: D e c k 1 , k 2 ′ ( E n c M a c k 1 , k 2 ′ ( m ) ) = m \mathsf{Dec}'_{k_1,k_2}(\mathsf{EncMac}'_{k_1,k_2}(m)) = m Deck1,k2(EncMack1,k2(m))=m.
    • 注:在消息传递方案中,消息被加密并且被MAC。在解密算法中,当密文没有通过真实性验证时,输出空(可以理解为“报错”);这意味着未认证的密文无法解密。
  5. 定义安全消息传递

    • 先定义保护真实性的认证通信,然后定义同时保护机密性和真实性的认证加密。
    • 安全消息传递实验(secure message transmission A u t h A , Π ′ ( n ) \mathsf{Auth}_{\mathcal{A},\Pi'}(n) AuthA,Π(n):
      • k = ( k 1 , k 2 ) ← G e n ′ ( 1 n ) k = (k_1,k_2) \gets \mathsf{Gen}'(1^n) k=(k1,k2)Gen(1n).
      • A \mathcal{A} A 输入 1 n 1^n 1n 和对 E n c M a c ′ k \mathsf{EncMac'}_k EncMack的预言机访问,并输出 c ← E n c M a c ′ k ( m ) c \gets \mathsf{EncMac'}_{k}(m) cEncMack(m).
      • m : = D e c k ′ ( c ) m := \mathsf{Dec}'_k(c) m:=Deck(c). A u t h A , Π ′ ( n ) = 1    ⟺    m ≠ ⊥ ∧    m ∉ Q \mathsf{Auth}_{\mathcal{A},\Pi'}(n) = 1 \iff m \ne \bot \land\; m \notin \mathcal{Q} AuthA,Π(n)=1m=m/Q.
    • 定义: Π ′ \Pi' Π 实现认证通信( authenticated communication),如果 ∀ \forall ppt A \mathcal{A} A, ∃    n e g l \exists\; \mathsf{negl} negl 使得, Pr ⁡ [ A u t h A , Π ′ ( n ) = 1 ] ≤ n e g l ( n ) . \Pr[\mathsf{Auth}_{\mathcal{A},\Pi'}(n) = 1] \le \mathsf{negl}(n). Pr[AuthA,Π(n)=1]negl(n).
    • 定义: Π ′ \Pi' Π 是安全的认证加密(secure Authenticated Encryption (A.E.)), 如果其既是CCA安全的也是实现了认证通信。
    • 问题:CCA安全意味着A.E.吗?(作业)
  6. 关于认证加密的例题

    • 如果认为是安全的,那么利用反证法证明;
    • 如果认为是不安全的,那么或者可以伪造消息,或者破解明文;
  7. 加密和认证组合

    • 加密和认证如何组合来同时保护机密性和真实性?
    • 加密并认证(Encrypt-and-authenticate) (例如, SSH): c ← E n c k 1 ( m ) ,    t ← M a c k 2 ( m ) . c \gets \mathsf{Enc}_{k_1}(m),\; t \gets \mathsf{Mac}_{k_2}(m). cEnck1(m),tMack2(m).
    • 先认证后加密(Authenticate-then-encrypt) (例如, SSL): t ← M a c k 2 ( m ) ,    c ← E n c k 1 ( m ∥ t ) . t \gets \mathsf{Mac}_{k_2}(m),\; c \gets \mathsf{Enc}_{k_1}(m\| t). tMack2(m),cEnck1(mt).
    • 先加密后认证(Encrypt-then-authenticate) (例如, IPsec): c ← E n c k 1 ( m ) ,    t ← M a c k 2 ( c ) . c \gets \mathsf{Enc}_{k_1}(m),\; t \gets \mathsf{Mac}_{k_2}(c). cEnck1(m),tMack2(c).
  8. 分析组合的安全性

    • 采用全或无(All-or-nothing)分析,即一种组合方案要么在全部情况下都是安全的,要么只要存在一个不安全的反例就被认为是不安全的;
    • 加密并认证: M a c k ′ ( m ) = ( m , M a c k ( m ) ) \mathsf{Mac}'_k(m) = (m, \mathsf{Mac}_k(m)) Mack(m)=(m,Mack(m)).
      • 这表明,认证可能泄漏消息。
    • 先认证后加密:
      • 一个例子:
        • T r a n s : 0 → 00 ; 1 → 10 / 01 \mathsf{Trans}: 0 \to 00; 1 \to 10/01 Trans:000;110/01;
        • E n c ′ \mathsf{Enc}' Enc 采用CTR模式; c = E n c ′ ( T r a n s ( m ∥ M a c ( m ) ) ) c = \mathsf{Enc}'(\mathsf{Trans}(m\| \mathsf{Mac}(m))) c=Enc(Trans(mMac(m))).
        • c c c 的前两个比特翻转并且验证密文是否有效。 10 / 01 → 01 / 10 → 1 10/01 \to 01/10 \to 1 10/0101/101, 00 → 11 → ⊥ 00 \to 11 \to \bot 0011.
          • 明文为1时,不改变明文;明文为0时,解密无效
        • 如果可以有效解密,则意味着消息的第一比特是1,否则是0;
        • 对于任何MAC,这都不是CCA安全的;
      • 这个例子表明,缺乏完整性保护时,敌手可解密,而密文是否有效也价值1个比特的信息。
    • 先加密后认证: 解密: 如果 V r f y ( ⋅ ) = 1 \mathsf{Vrfy}(\cdot) = 1 Vrfy()=1, 那么 D e c ( ⋅ ) \mathsf{Dec}(\cdot) Dec(); 否则,输出 ⊥ \bot 。下面来证明。
  9. 构造AE/CCA安全的加密方案

    • 思想:令解密预言机没用。AE/CCA =CPA-then-MAC。
    • Π E = ( G e n E , E n c , D e c ) \Pi_E = (\mathsf{Gen}_E, \mathsf{Enc}, \mathsf{Dec}) ΠE=(GenE,Enc,Dec), Π M = ( G e n M , M a c , V r f y ) \Pi_M = (\mathsf{Gen}_M, \mathsf{Mac}, \mathsf{Vrfy}) ΠM=(GenM,Mac,Vrfy). Π ′ \Pi' Π:
      • G e n ′ ( 1 n ) \mathsf{Gen}'(1^n) Gen(1n): k 1 ← G e n E ( 1 n ) k_1 \gets \mathsf{Gen}_E(1^n) k1GenE(1n) and k 2 ← G e n M ( 1 n ) k_2 \gets \mathsf{Gen}_M(1^n) k2GenM(1n)
      • E n c k 1 , k 2 ′ ( m ) \mathsf{Enc}'_{k_1,k_2}(m) Enck1,k2(m): c ← E n c k 1 ( m ) c \gets \mathsf{Enc}_{k_1}(m) cEnck1(m), t ← M a c k 2 ( c ) t \gets \mathsf{Mac}_{k_2}(c) tMack2(c) and output < c , t > \left< c,t \right> c,t
      • D e c k 1 , k 2 ′ ( < c , t > ) = D e c k 1 ( c )  if  V r f y k 2 ( c , t ) = ? 1 ;  otherwise  ⊥ \mathsf{Dec}'_{k_1,k_2}(\left< c,t \right>) = \mathsf{Dec}_{k_1}(c)\ \text{if}\ \mathsf{Vrfy}_{k_2}(c,t) \overset{?}{=} 1;\ \text{otherwise}\ \bot Deck1,k2(c,t)=Deck1(c) if Vrfyk2(c,t)=?1; otherwise 
    • 加密时,先加密后对密文做认证;解密时,先验证,若未通过验证,则输出空,否则解密。
  10. AE/CCA安全加密方案证明

    • 定理:如果 Π E \Pi_E ΠE 是CPA安全的私钥加密方案并且 Π M \Pi_M ΠM 是一个安全的MAC,那么构造 Π ′ \Pi' Π 是CCA安全的。

    • 证明: V Q \mathsf{VQ} VQ (有效查询): A \mathcal{A} A 向预言机 D e c ′ \mathsf{Dec}' Dec提交一个新查询并且 V r f y = 1 \mathsf{Vrfy}=1 Vrfy=1注:VQ表示敌手向预言机查询可经过验证并解密。

    • Pr ⁡ [ P r i v K A , Π ′ c c a ( n ) = 1 ] ≤ Pr ⁡ [ V Q ] + Pr ⁡ [ P r i v K A , Π ′ c c a ( n ) = 1 ∧ V Q ‾ ] \Pr[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi'}(n)=1] \le \Pr[\mathsf{VQ}] + \Pr[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi'}(n)=1 \land \overline{\mathsf{VQ}}] Pr[PrivKA,Πcca(n)=1]Pr[VQ]+Pr[PrivKA,Πcca(n)=1VQ]

    • 我们需要证明以下:

      • Pr ⁡ [ V Q ] \Pr[\mathsf{VQ}] Pr[VQ] 是可忽略的;敌手无法利用解密预言机获得有效查询;

      • Pr ⁡ [ P r i v K A , Π ′ c c a ( n ) = 1 ∧ V Q ‾ ] ≤ 1 2 + n e g l ( n ) \Pr[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi'}(n)=1 \land \overline{\mathsf{VQ}}] \le \frac{1}{2} + \mathsf{negl}(n) Pr[PrivKA,Πcca(n)=1VQ]21+negl(n);在无法利用解密预言机时难以破解加密方案。

  11. 证明敌手无法利用解密预言机获得有效查询

    • 思路:将 A M \mathcal{A}_M AM (有预言机 M a c k 2 ( ⋅ ) \mathsf{Mac}_{k_2}(\cdot) Mack2()攻击 Π M \Pi_M ΠM ) 规约到 A \mathcal{A} A
    • A M \mathcal{A}_M AM A \mathcal{A} A 为子函数来运行。 A \mathcal{A} A 将产生 q ( n ) q(n) q(n)个解密预言机查询, A M \mathcal{A}_M AM 预先从中均匀随机选择一个编号 i ← { 1 , … , q ( n ) } i \gets \{1,\dotsc,q(n)\} i{1,,q(n)},并将该查询作为输出的伪造;
    • A \mathcal{A} A m m m查询加密预言机时, A M \mathcal{A}_M AM 产生加密密钥并以加密预言机的角色先计算密文 c c c,然后用密文查询MAC预言机并将 < c , t > \left<c, t\right> c,t返回给 A \mathcal{A} A
    • A \mathcal{A} A < c , t > \left<c, t\right> c,t查询解密预言机时,如果这是第 i i i 个查询,那么 A M \mathcal{A}_M AM 输出 < c , t > \left<c, t\right> c,t并停止;否则,如果这是曾经在加密预言机查询过的, A M \mathcal{A}_M AM 返回明文,否则,返回 ⊥ \bot (因为只要 V Q \mathsf{VQ} VQ未发生,就应该返回 ⊥ \bot );
    • M a c f o r g e A M , Π M ( n ) = 1 \mathsf{Macforge}_{\mathcal{A}_M,\Pi_M }(n)=1 MacforgeAM,ΠM(n)=1 的条件是,只有当 V Q \mathsf{VQ} VQ 发生并且 A M \mathcal{A}_M AM 正确地猜测了 i i i (概率为 1 / q ( n ) 1/q(n) 1/q(n))。
    • Pr ⁡ [ M a c f o r g e A M , Π M ( n ) = 1 ] ≥ Pr ⁡ [ V Q ] / q ( n ) . \Pr [\mathsf{Macforge}_{\mathcal{A}_M,\Pi_M }(n)=1] \ge \Pr[\mathsf{VQ}]/q(n). Pr[MacforgeAM,ΠM(n)=1]Pr[VQ]/q(n).
  12. 证明在无法利用解密预言机时难以破解加密方案

    • 思路:将 A E \mathcal{A}_E AE (以 E n c k 1 ( ⋅ ) \mathsf{Enc}_{k_1}(\cdot) Enck1() 预言机来攻击 Π E \Pi_E ΠE ) 规约到 A \mathcal{A} A

    • A E \mathcal{A}_E AE A \mathcal{A} A 为子函数来运行。 A E \mathcal{A}_E AE 扮演 A \mathcal{A} A 的加密预言机和解密预言机方法与 A M \mathcal{A}_M AM 的类似;

    • 实验 P r i v K A E , Π E c p a \mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A}_E,\Pi_E} PrivKAE,ΠEcpa 与实验 P r i v K A , Π ′ c c a \mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi'} PrivKA,Πcca 的运行一样, A E \mathcal{A}_E AE 输出与 A \mathcal{A} A 一样的 b ′ b' b

    • Pr ⁡ [ P r i v K A E , Π E c p a ( n ) = 1 ∧ V Q ‾ ] = Pr ⁡ [ P r i v K A , Π ′ c c a ( n ) = 1 ∧ V Q ‾ ] \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A}_E,\Pi_E}(n)=1 \land \overline{\mathsf{VQ}}] = \Pr[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi'}(n)=1 \land \overline{\mathsf{VQ}}] Pr[PrivKAE,ΠEcpa(n)=1VQ]=Pr[PrivKA,Πcca(n)=1VQ]

      Pr ⁡ [ P r i v K A E , Π E c p a ( n ) = 1 ] ≥ Pr ⁡ [ P r i v K A , Π ′ c c a ( n ) = 1 ∧ V Q ‾ ] \Pr [\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A}_E,\Pi_E }(n)=1] \ge \Pr[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi'}(n)=1 \land \overline{\mathsf{VQ}}] Pr[PrivKAE,ΠEcpa(n)=1]Pr[PrivKA,Πcca(n)=1VQ]

  13. 认证加密理论与实践

    • 定理: Π E \Pi_E ΠE 是CPA安全的并且 Π M \Pi_M ΠM 是一个带有唯一标签的安全MAC(强安全MAC),那么由先加密后认证得到的 Π ′ \Pi' Π 是安全的。注:强安全MAC是指一个消息只有一个有效标签
    • GCM (Galois/Counter Mode): 先CTR加密,然后做 Galois MAC. (RFC4106/4543/5647/5288 on IPsec/SSH/TLS)
    • EAX: 先CTR 加密,然后 CMAC(Cipher-based MAC)。
    • 定理:先认证后加密方法是安全的,如果 Π E \Pi_E ΠE 是CTR模式或者CBC模式。
    • CCM (Counter with CBC-MAC): 先 CBC-MAC 后 CTR 加密。 (802.11i, RFC3610)
    • OCB (Offset Codebook Mode): 将MAC整合到加密中。 (是CCM, EAX的2倍快)
    • 上述方案都支持 AEAD (A.E. with associated data): 部分是明文并且整个消息被认证。这在实践中是很常用的,例如一个IP报文需要加密,但IP头部需要以明文方式传输。
  14. 安全消息传递补充

    • 认证可能泄漏消息;注:完整性不同于机密性
    • 安全消息传递意味着CCA安全性,但反之未必;
    • 不同安全目标应该采用不同的密钥;否则,可能泄漏消息,例如 M a c k ( c ) = D e c k ( c ) \mathsf{Mac}_k(c)=\mathsf{Dec}_k(c) Mack(c)=Deck(c)
    • 实现可能摧毁理论上的安全性:
      • Padding Oracle 攻击(TLS 1.0): 解密返回两种类型错误: padding error,MAC error;敌手通过猜测来获得最后一字节,如果没有padding错误;参考之前在CCA部分学习的Padding Oracle攻击;
      • 攻击非原子解密(SSH Binary Packet Protocol):解密时,分三步 (1)解密消息长度; (2)读取长度所表明的包数; (3) 检查MAC;敌手针对这种非原子解密过程,实施攻击分三步 (1)发送密文 c c c;(2)发送 l l l 个包直到“MAC error”发生;(3)获得密文对应的明文 l = D e c ( c ) l = \mathsf{Dec}(c) l=Dec(c)
  15. 确定性CPA安全(Deterministic CPA Security

    • 应用:在加密数据库索引后,检索时需要加密明文来检索密文;在磁盘加密中,密文大小需要与明文一样大。但之前学习的CPA安全加密都是非确定性的,而且密文比明文长。
    • 确定性加密(Deterministic encryption):相同的消息在相同密钥下被加密为相同的密文。
      • 问题:这样能实现CPA安全吗?答案是不可能,因为CPA安全意味着非确定性加密,密文长于明文。于是,我们需要新的安全定义。
    • 确定性CPA安全(Deterministic CPA Security): 如果从来不用相同的密钥加密同一个消息两次,实现CPA安全,即密钥和消息对 < k , m > \left<k,m\right> k,m 是唯一的。
      • 这里引入新的条件:消息是可重复的,密钥也可重复,但同一密钥不能重复加密同一消息。这是为了实现CPA而做出的必要改变。相当于获得确定性下CPA安全的同时,丧失同一个消息被同一个密文加密多次的能力。
    • 一个PRP就是固定长度的确定性CPA安全加密方案。
    • 确定性认证加密(Deterministic Authenticated Encryption,DAE):与上面的确定性CPA安全概念类似。
  16. 在变长加密中的一个常见错误

    • 常见错误:在 CBC/CTR 模式中采用固定的 I V IV IV。这虽然是确定性的,但是不安全。
    • 敌手能够查询 ( m q 1 , m q 2 ) (m_{q1}, m_{q2}) (mq1,mq2) 并且得到 ( c q 1 , c q 2 ) (c_{q1}, c_{q2}) (cq1,cq2);然后输出明文: I V ⊕ c q 1 ⊕ m q 2 IV\oplus c_{q1} \oplus m_{q2} IVcq1mq2 并且期待密文: c q 2 c_{q2} cq2。注:第一个PRF的输入就是 I V ⊕ I V ⊕ c q 1 ⊕ m q 2 = c q 1 ⊕ m q 2 IV\oplus IV\oplus c_{q1} \oplus m_{q2} = c_{q1} \oplus m_{q2} IVIVcq1mq2=cq1mq2
    • 下面介绍三种变长明文的CPA安全的确定性加密方案。
  17. 合成初始向量法(Synthetic IV (SIV)

    • 思路:保持初始向量对敌手仍是不可预测的,但是由明文和密钥确定的。
    • 合成初始向量 SIV :对同一对 < k , m > \left<k,m\right> k,m使用一个固定的 I V IV IV ,用明文通过PRF生成SIV,再用另一个密钥加密;
    • 一个PRF F F F,和一个 CPA安全 Π : ( E n c k ( r , m ) , D e c k ( r , s ) ) \Pi:(\mathsf{Enc}_k(r,m), \mathsf{Dec}_k(r,s)) Π:(Enck(r,m),Deck(r,s))
    • 生成两个密钥 ( k 1 , k 2 ) ← G e n (k_1,k_2) \gets \mathsf{Gen} (k1,k2)Gen; 得到合成初始向量 S I V ← F k 1 ( m ) SIV \gets F_{k_1}(m) SIVFk1(m);以SIV做为IV来加密 c = < S I V , E n c k 2 ( S I V , m ) > c = \left<SIV,\mathsf{Enc}_{k_2}(SIV,m) \right> c=SIV,Enck2(SIV,m)
    • 采用SIV-CTR可以实现 DAE:MAC标签 t : = S I V t := SIV t:=SIV ,然后应用 C T R k 2 CTR_{k_2} CTRk2
  18. 宽块PRP(Wide Block PRP

    • 思路:因为一个PRP本身是确定性CPA安全,因此,构造一个大的PRP来加密。
    • 宽块PRP就是PRP,从较短的PRP(例如AES)构造一个更长的块大小,和消息一样大(例如磁盘上一个扇区)。
    • PRP-based DAE: E n c k ( m ∥ 0 ℓ ) \mathsf{Enc}_k(m\| 0^{\ell}) Enck(m0)。在解密中 D e c \mathsf{Dec} Dec,如果后半部分明文 ≠ 0 ℓ \neq 0^{\ell} =0,输出 ⊥ \perp
    • 窄块(Narrow block)可能泄漏信息,由于有一些块相同时,可能泄漏信息。
    • 标准: IEEE P1619.2 中 CBC-mask-CBC (CMC) 和 ECB-mask-ECB (EME) 。
    • 代价:由于两轮加密比SIV方法慢两倍。
  19. 可调加密(Tweakable Encryption

    • 思路:从密钥生成不同的密钥,一次一密
    • 无扩展加密(Encryption without expansion): 明文空间与密文空间相同 M = C \mathcal{M} = \mathcal{C} M=C 意味着没有完整性保护的确定性加密,例如磁盘加密。
    • Tweak是一个类似初始向量的值,在同一密钥下,不同的tweak构造不同的PRP。每一个块采用不同的tweak。
    • 可调块密码(Tweakable block ciphers):用一个密钥生成许多PRP K × T × X → X \mathcal{K} \times \mathcal{T} \times \mathcal{X} \to \mathcal{X} K×T×XX, T \mathcal{T} T 是tweak集合。
    • 一种简单的解决方法:以一个Tweak t t t来生成密钥 k t = F k ( t ) , t = 1 , … , ℓ k_t = F_k(t), t=1,\dots,\ell kt=Fk(t),t=1,,,但要加密两次效率不高,需要更有效的方法。
  20. XTS

    • XTS:XEX(Xor-Encrypt-Xor)-based tweaked-codebook mode with ciphertext stealing。 (XTS-AES, NIST SP 800-38E)
    • XEX: c = F k ( m ⊕ x ) ⊕ x c = F_k(m\oplus x)\oplus x c=Fk(mx)x,其中在 Galois 域上 x = F k ( I ) ⊗ 2 j x=F_k(I)\otimes 2^j x=Fk(I)2j ,在扇区 I I I中块 j j j 对应的tweak是 ( I , j ) (I,j) (I,j)
    • Ciphertext stealing (CTS):无需填充(padding),没有扩展。
  21. 密钥派生函数(Key Derivation Function (KDF)

    • 密钥派生函数(Key Derivation Function,KDF):从一个秘密的原密钥 s k sk sk 产生许多密钥;
    • 对于均匀随机的 s k sk sk F F F 是 PRF, c t x ctx ctx 是标识应用的唯一串, K D F ( s k , c t x , l ) = < F s k ( c t x ∥ 0 ) , F s k ( c t x ∥ 1 ) ⋯   , F s k ( c t x ∥ l ) > . \mathsf{KDF}(sk,ctx,l) = \left<F_{sk}(ctx\|0),F_{sk}(ctx\|1)\cdots,F_{sk}(ctx\|l)\right>. KDF(sk,ctx,l)=Fsk(ctx0),Fsk(ctx1),Fsk(ctxl).
    • 对于非均匀随机的 s k sk sk:提取并扩展范式
      • 提取(extract): HKDF k ← H M A C ( s a l t , s k ) k \gets \mathsf{HMAC}(salt,sk) kHMAC(salt,sk) s a l t salt salt(盐)是一个随机数。用盐来向密钥添加熵。
      • 扩展(expand):与上面均匀随机情况一样。
  22. 基于口令的KDF(Password-Based KDF, PBKDF

    • 密钥延展(Key stretching)增加测试密钥的时间 (使用较慢的哈希函数)。
    • 密钥加强(Key strengthening)增加密钥的长度和随机性 (使用盐)。
    • PKCS#5 (PBKDF1): H ( c ) ( p w d ∥ s a l t ) H^{(c)}(pwd\|salt) H(c)(pwdsalt), 哈希函数迭代 c c c 次。
    • 敌手攻击,或者尝试被加强的密钥 (更大的密钥空间),或者尝试初始密钥 (每个密钥花费更长时间)。
  23. IV,Nonce,Counter,Tweak和Salt

    • IV:密码学原语的输入,提供随机性。
    • nonce:用来标记一次通信的只使用一次的一个数。
    • counter:一个连续的数,用作nonce或IV。
    • tweak:在一个密码中对每个块只用一次的输入。
    • salt:随机比特,用于创建一个函数的输入。
  24. 总结

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/321418.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙应用开发学习:让page页面强制横屏

一、学习做了个适合横屏的页面但进入页面后是竖屏显示的 前几天在B站上跟着 黑马程序员的 HarmonyOS4.0开发应用教学视频学习了显式动画&#xff08;animateTo&#xff09;和属性动画&#xff08;animation&#xff09;功能&#xff0c;并参照教学视频的内容做了个小鱼动画。…

助力工业园区作业违规行为检测预警,基于YOLOv7【tiny/l/x】不同系列参数模型开发构建工业园区场景下作业人员违规行为检测识别系统

在很多工业园区生产作业场景下保障合规合法进行作业生产操作&#xff0c;对于保护工人生命安全降低安全隐患有着非常重要的作用&#xff0c;但是往往在实际的作业生产中&#xff0c;因为一个安全观念的淡薄或者是粗心大意&#xff0c;对于纪律约束等意思薄弱&#xff0c;导致在…

绝地求生:【PC】第27赛季第2轮更新公告

各位玩家大家好&#xff01;欢迎收看本期闲游盒更新公告。 正式服维护时间 ※ 下列时间可能会根据维护情况而发生变化。 1月10日上午8:00 – 下午4:30 地图轮换 ※ 地图轮换将于每周三上午10点进行。 ※ 在随机选择地图的地区中&#xff0c;第1周可选择荣都地图&#xff0c…

UML-通信图和交互概览图(通信图和顺序图的区别与联系)

UML-通信图和交互概览图&#xff08;通信图和顺序图的区别与联系&#xff09; 一、通信图简介1.消息2.链接 二、通信图和[顺序图](https://blog.csdn.net/weixin_65032328/article/details/135587782)的联系与区别三、交互概览图四、顺序图转化为通信图练习 一、通信图简介 通…

CSC8021_computer network_The Transport Layer

Role of the transport layer • The transport layer is responsible for providing a reliable end-to-end connection between two application processes in a network • Abstracting away the physical subnet • Does not involve intermediate nodes • Takes a netwo…

2024--Django平台开发-Redis集群(十一)

内容回顾 主从复制。 哨兵&#xff1a;实例启动了&#xff0c;哨兵节点没启动&#xff0c;Python通过redis-py连接报错。一定要确保实例节点和哨兵节点都启动了。 搭建集群用的是虚拟机的多台centos服务器&#xff0c;你在跟着学习的时候&#xff0c;一定要全部都是虚拟机&am…

MySQL面试题2

文章目录 面试题 (9-15) 面试题 (9-15) 09&#xff09;查询学过「张三」老师授课的同学的信息 SELECT s.*,c.cname,t.tname FROM t_mysql_teacher t,t_mysql_student s,t_mysql_course c,t_mysql_score sc WHERE t.tidc.tid and c.cidsc.cid and sc.sids.sid and tname ‘张…

EI级 | Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测

EI级 | Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测 目录 EI级 | Matlab实现VMD-TCN-BiLSTM变分模态分解结合时间卷积双向长短期记忆神经网络多变量光伏功率时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基…

QLExpress和Groovy对比

原理 Groovy groovy基于JVM运行。 编译时&#xff1a;将源文件编译成class文件后&#xff0c;用java的classLoader加载&#xff1b;运行时&#xff1a;直接用groovy classLoader加载 QLExpress QLExpress将文本解析成AST&#xff0c;用java对象表达后执行。 特点 Groo…

如何用LLM和自有知识库搭建智能agent?

用LangChain建立知识库&#xff0c;文末中也推荐其他方案。 项目源码&#xff1a;ChatPDF实现 LangChain Indexes使用 对加载的内容进行索引&#xff0c;在indexes中提供了一些功能&#xff1a; Document Loaders&#xff0c;加载文档Text Splitters&#xff0c;文档切分V…

android.os.NetworkOnMainThreadException

问题 android.os.NetworkOnMainThreadException详细问题 核心代码如下&#xff1a; import android.os.Bundle;import androidx.appcompat.app.AppCompatActivity;import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import ja…

【Java】IDEA中的JFormDesigner使用教程

目录 1 安装 JFormDesigner 插件2 JFormDesigner 使用教程2.1 新建JFormDesigner Form时的选项2.2 JFormDesigner Form界面布局2.3 JFormDesigner 常用组件 JFormDesigner 是一款用于设计和创建图形用户界面&#xff08;GUI&#xff09;的插件&#xff0c;它允许开发者使用可视…

鸿蒙Harmony-相对布局(RelativeContainer)详解

成年人的世界&#xff0c;从来没有容易二字&#xff0c;想要什么&#xff0c;就得凭自己的努力去拿&#xff0c;遇到事情就得自己生生的硬抗&#xff0c;希望你即使再辛苦&#xff0c;但还是会选择这滚烫的人生&#xff0c;加油陌生的朋友们 目录 一&#xff0c;定义 二&#x…

瑞_Java开发手册_(一)编程规约

文章目录 编程规约的意义&#xff08;一&#xff09;命名风格&#xff08;二&#xff09;常量定义&#xff08;三&#xff09;代码格式&#xff08;四&#xff09;OOP 规约&#xff08;五&#xff09;日期时间&#xff08;六&#xff09;集合处理&#xff08;七&#xff09;并发…

网络分流规则

现在的网络是越来越复杂。 有必要进行分流。 有一些geosite.dat是已经整理好的&#xff0c;包含许多的网站的分类&#xff1a; 分流规则&#xff1a; route规则 主要是: {"type": "field","outboundTag": "direct","domain&quo…

Material Design 进阶(十一)——Chip,ChipGroup,ChipDrawable使用

流式布局标签发展历程 第一阶段&#xff1a;实现这种界面的时候&#xff0c;基本都是自定义一个控件&#xff0c;然后在Java代码中动态的 添加一个个的TextView&#xff0c;还需要计算布局宽度/高度&#xff0c;进行换行等等处理&#xff0c;比较复杂;第二阶段&#xff1a;使用…

cad二次开发autolisp(一)

文章目录 一、概述1.1 简介1.2 打开编辑器1.3 调试页面 二、数据类型三、函数3.1 用户函数 四、语句4.1 常规语句4.2 流程控制语句 五、图元操作5.1 定义5.2 图元选择5.3 图元属性列表 一、概述 1.1 简介 简介&#xff1a;cad 二次开发语言&#xff0c;后缀名*.lsp适用于编写…

恒源云GPU服务器使用Linux图形化界面

编程如画&#xff0c;我是panda&#xff01; 干货满满&#xff0c;不要走开~ 前言 前一节分享了如何在GPU云服务器上创建实例并运行YOLOV5项目&#xff0c;但是使用命令行的方式容易劝退很多小白&#xff0c;并且有些环境配置是需要图形化界面的&#xff0c;所以这一节就教大家…

1119: 一维数组排序(数组)

题目描述 对一维数组按照从小到大的顺序排序。程序定义函数sort()来实现数组a的排序。函数原型如下&#xff1a; void sort(int a[], int n); 数组元素的输出调用PrintArr()。 输入 第一行输入一个整数n&#xff08;1<n<10)&#xff0c;表示数组有n个整数&#xff…

SpringFramework实战指南(一)

SpringFramework实战指南&#xff08;一&#xff09; 一、技术体系结构1.1 总体技术体系1.2 框架概念和理解 一、技术体系结构 1.1 总体技术体系 单一架构 一个项目&#xff0c;一个工程&#xff0c;导出为一个war包&#xff0c;在一个Tomcat上运行。也叫all in one。 单一架…