基于传统机器学习模型算法的项目开发详细过程

1 场景分析

1.1 项目背景

描述开发项目模型的一系列情境和因素,包括问题、需求、机会、市场环境、竞争情况等

1.2. 解决问题

传统机器学习在解决实际问题中主要分为两类:

  • 有监督学习:已知输入、输出之间的关系而进行的学习,从而产生一个能够对已知输入给出合适输出的模型。这些算法在图像分类、语音识别、自然语言处理、推荐系统等领域有着广泛的应用
  • 无监督学习:已知输入,无输出结果而进行的学习,发现数据中的潜在特征和规律而训练的模型。这些算法在数据挖掘、图像处理、自然语言处理等领域有着广泛的应用

传统机器学习达到的目的主要分为两类

  • 分析影响结果的主要因素
  • 充分必要条件下预测结果

传统机器学习算法在实际开发中主要分两类

  • 基于树的算法
  • 非基于树的算法

2 数据整体情况

2.1 数据加载

数据分析3剑客:numpy pandas matplotlib

# 导入相关包
import os
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
pd.set_option('display.max_rows', None)
import matplotlib.pyplot as plt
import matplotlib
matplotlib.style.use('ggplot')
import seaborn as sns
import plotly.express as px
from sklearn import preprocessing
from sklearn.preprocessing import LabelEncoder
import holoviews as hv
from holoviews import opts
hv.extension('bokeh')

1、 pandas读取数据: pd.read_csv(),训练数据一般从csv文件加载。读取数据返回DataFrame,df.head() 查看前5条件数据分布

# 读取数据
df = pd.read_csv('./xxx.csv')
df.head()

在这里插入图片描述

2、查看数据总体信息

df.info() 

在这里插入图片描述
3、 查看数据描述

# 数据总数、平均值、标准差、最大最小值,25% 50% 75% 分位值
df.describe().T 

在这里插入图片描述

4、统计数据空值

df.isnull().sum() 

在这里插入图片描述
5、 查看数据形状

df.shape

在这里插入图片描述
6、查看数据类型

df.dtypes

在这里插入图片描述

2.2 样本是否均衡

如果正、负样本不均衡怎么做?

  • 大样本变少——下采样
  • 小样本变多——上采样
  • 实际应用中,上采样较多,将真实的数据做重复冗余

2.3 数据分析

以下为案例:

2.3.1单因分析

  • 绘制直方图
fig = px.histogram(df, x='列名', hover_data=df.columns, title='XXX分布', barmode='group')
fig.show()

在这里插入图片描述

fig = px.histogram(df, x='TPC_LIP', color='TPC_LIP', hover_data=df.columns, title='罐盖分布', barmode='group')
fig.show()

在这里插入图片描述

  • 绘制分布图
hv.Distribution(np.round(df['列名'])).opts(title='标题', color='green', xlabel='x轴标签名', ylabel='y轴标签名')\
.opts(opts.Distribution(width=1000, height=600, tools=['hover'], show_grid=True))

在这里插入图片描述

hv.Distribution(df['BF_IRON_DUR']).opts(title='XXX时长', color='red', xlabel='时长(秒)', ylabel='Destiny')\
.opts(opts.Distribution(width=1000, height=600, tools=['hover'], show_grid=True))

在这里插入图片描述

2.3.2 多因分析

  • 绘制直方图
temp_agg = df.groupby('OUTER_TEMPERATURE').agg({'TEMPERATURE': ['min', 'max']})
temp_maxmin = pd.merge(temp_agg['TEMPERATURE']['max'],temp_agg['TEMPERATURE']['min'],right_index=True,left_index=True)
temp_maxmin = pd.melt(temp_maxmin.reset_index(), ['OUTER_TEMPERATURE']).rename(columns={'OUTER_TEMPERATURE':'OUTER_TEMPERATURE', 'variable':'Max/Min'})
hv.Bars(temp_maxmin, ['OUTER_TEMPERATURE', 'Max/Min'], 'value').opts(title="Temperature by OUTER_TEMPERATURE Max/Min", ylabel="TEMPERATURE")\
                                                                    .opts(opts.Bars(width=1000, height=700,tools=['hover'],show_grid=True))

在这里插入图片描述

  • 寻找特征偏态(skewness)和核密度估计(Kernel density estimate KDE)
plt.figure(figsize=(15,10))
for i,col in enumerate(df.columns, 1):
    plt.subplot(5,3,i)
    plt.title(f"Distribution of {col} Data")
    sns.histplot(df[col],kde=True)
    plt.tight_layout()
    plt.plot()

在这里插入图片描述

  • 绘制曲线图
iron_temp = df['IRON_TEMPERATURE'].iloc[:300]

temp = df['TEMPERATURE'].iloc[:300]

(hv.Curve(iron_temp, label='XXX') * hv.Curve(temp, label='XXX')).opts(title="XXXX温度对比", ylabel="IRON_TEMPERATURE", xlabel='TEMPERATURE')\
                                                         .opts(opts.Curve(width=1500, height=500,tools=['hover'], show_grid=True))

在这里插入图片描述

3 数据处理

3.1 数据清洗

3.1.1离群值

利用箱形图找出离群值并可过滤剔除

Minimum 最小值
First quartile 1/4分位值
Median 中间值
Third quartile 3/4分位值
Maximum 最大值

  • XXX离群值1

在这里插入图片描述

  • XXX离群值2
fig = px.box(df, y='XXX', title='XXXXX')
fig.show()

在这里插入图片描述

3.1.2空数据处理

如果数据量比较大,查出空数据的行或列删除即可,反之要珍惜现有的数据样本

可采用以下两种方法进行补全

  • 随机森林补全
# 引入随机森林模型
from sklearn.ensemble import RandomForestRegressor
# 随机森林模型
rfr = RandomForestRegressor(random_state=None, n_estimators=500, n_jobs=-1)
# 利用已知输入和输出数据进行模型训练
rfr.fit(known_X, known_y)
# 输出模型得分
score = rfr.score(known_X, known_y)
print('模型得分', score)
# 获得缺失的特征数据X预测并补全
unknown_predict = rfr.predict(unKnown_X)
  • 简单归类补全
# 引入简单归类包
from sklearn.impute import SimpleImputer
# 对缺失的列进行平均值补全
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
# 进行模型训练
imputer = imputer.fit_transform(df[['TEMPERATURE']])
# 输出训练结果
imputer

在这里插入图片描述

3.2 特征工程

特征衍生、选择、缩放、分布、重要性

  • 特征衍生: 特征转换和特征组合

    特征转换——单特征自己进行变换,例如取绝对值、进行幂函数变换等
    特征组合——多特征之间组合变换,如四则运算、交叉组合、分组统计等

3.2.1 特征选择

corr相关性系数,删除相关性强、冗余的特征,对分析特征权重很重要

# 浅颜色代表正相关 深颜色代表负相关
plt.figure(figsize=(16, 16))
sns.heatmap(df.corr(), cmap='BrBG', annot=True, linewidths=.5)
_ = plt.xticks(rotation=45)

在这里插入图片描述

3.2.2 特征缩放

  • 受特征缩放的影响:距离算法 KNN K-means SVM 等

在这里插入图片描述

  • 不受特征缩放的影响:基于树的算法
    在这里插入图片描述

缩放方法

  • 归一化
    最大、最小值 0~1 之间,适合非高斯分布 K-Nearest Neighbors and Neural Networks
    在这里插入图片描述

  • 标准化
    适合高斯分布,但也可不是高斯分布。平均值为0,标准差为1,即使有异常值不受影响
    在这里插入图片描述

  • Robust Scaler(鲁棒缩放)
    计算上下四分位数(Q1和Q3)之间的差值,每个数据点减去下四分位数(Q1),再除以四分位数范围(Q3-Q1)

# data
x = pd.DataFrame({
    # Distribution with lower outliers
    'x1': np.concatenate([np.random.normal(20, 2, 1000), np.random.normal(1, 2, 25)]),
    # Distribution with higher outliers
    'x2': np.concatenate([np.random.normal(30, 2, 1000), np.random.normal(50, 2, 25)]),
})
np.random.normal
 
scaler = preprocessing.RobustScaler()
robust_df = scaler.fit_transform(x)
robust_df = pd.DataFrame(robust_df, columns =['x1', 'x2'])
 
scaler = preprocessing.StandardScaler()
standard_df = scaler.fit_transform(x)
standard_df = pd.DataFrame(standard_df, columns =['x1', 'x2'])
 
scaler = preprocessing.MinMaxScaler()
minmax_df = scaler.fit_transform(x)
minmax_df = pd.DataFrame(minmax_df, columns =['x1', 'x2'])
 
fig, (ax1, ax2, ax3, ax4) = plt.subplots(ncols = 4, figsize =(20, 5))
ax1.set_title('Before Scaling')
 
sns.kdeplot(x['x1'], ax = ax1, color ='r')
sns.kdeplot(x['x2'], ax = ax1, color ='b')
ax2.set_title('After Robust Scaling')
 
sns.kdeplot(robust_df['x1'], ax = ax2, color ='red')
sns.kdeplot(robust_df['x2'], ax = ax2, color ='blue')
ax3.set_title('After Standard Scaling')
 
sns.kdeplot(standard_df['x1'], ax = ax3, color ='black')
sns.kdeplot(standard_df['x2'], ax = ax3, color ='g')
ax4.set_title('After Min-Max Scaling')
 
sns.kdeplot(minmax_df['x1'], ax = ax4, color ='black')
sns.kdeplot(minmax_df['x2'], ax = ax4, color ='g')
plt.show()

在这里插入图片描述

3.2.3 类别特征处理

  • 非基于树的算法最好的方式——独热编码
# 独热编码
feature_col_nontree = ['TPC_AGE','TPC_LID','BF_START_WAITING', 'BF_IRON_DUR', 'BF_END_WAITING', 'BF_RAIL_DUR', 'RAIL_STEEL_DUR', 
                  'EMPTY_START_WAITING', 'EMPTY_DUR', 'EMPTY_END_WAITING', 'STEEL_RAIL_DUR', 'RAIL_BF_DUR','TOTAL_TIME','OUTER_TEMPERATURE']
fullSel=pd.get_dummies(feature_col_nontree)

在这里插入图片描述

  • 基于树的算法最好的方式——标签编码
df_tree = df.apply(LabelEncoder().fit_transform)
df_tree.head()

3.2.4 特征重要性

注意:只有在特征没有冗余或被拆分的情况下,分析特征的重要性才有意义

from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier()
clf.fit(X, y)
clf.feature_importances_
plt.rcParams['figure.figsize'] = (12, 6)
plt.style.use('fivethirtyeight')

feature = list(X.columns)

importances = clf.feature_importances_
feat_name = np.array(feature)
index = np.argsort(importances)[::-1]

plt.bar(range(len(index)), importances[index], color='lightblue')
plt.step(range(15), np.cumsum(importances[index]))
_ = plt.xticks(range(15), labels=feat_name[index], rotation='vertical', fontsize=14)

在这里插入图片描述

4 构建模型

4.1 数据拆分

训练数据80% 测试数据20%
训练数据80% 在分80%为训练数据,20%为验证数据

from sklearn.model_selection import train_test_split
X = df.drop('TEMPERATURE', axis=1)
y = df['TEMPERATURE']
X_train_all, X_test, y_train_all,  y_test = train_test_split(X, y, test_size=0.2)
X_train, X_valid, y_train, y_valid = train_test_split(X_train_all, y_train_all, test_size=0.2)
print(X_train.shape, y_train.shape)
print(X_test.shape, y_test.shape)
print(X_valid.shape, y_valid.shape)

在这里插入图片描述

4.2 选用算法

非基于树的算法

  • LinearRegression
  • LogisticRegression
  • Naive Bayes
  • SVM
  • KNN
  • K-Means

基于树的算法

  • Decission Trees
  • Extra Trees
  • Random Forest
  • XGBoost
  • GBM
  • LightGBM

4.2 数据交叉验证

  • k-fold cross-validation:
    k个不相交的子集,其中一个子集作为测试集,其余的子集作为训练集。重复k次
  • stratified k-fold cross-validation (样本分布不均匀情况下使用)
    在这里插入图片描述

4.3 算法比较优选

# 导入机器学习 线性回归为例
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, ExtraTreesRegressor
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.svm import SVR
from xgboost import XGBRegressor
from sklearn.model_selection import GridSearchCV, cross_val_score, StratifiedKFold

# 设置kfold 交叉采样法拆分数据集
kfold = StratifiedKFold(n_splits=10)

# 汇总不同模型算法
regressors = []
regressors.append(SVR())
regressors.append(DecisionTreeRegressor())
regressors.append(RandomForestRegressor())
regressors.append(ExtraTreesRegressor())
regressors.append(GradientBoostingRegressor())
regressors.append(KNeighborsRegressor())
regressors.append(LinearRegression())
regressors.append(LinearDiscriminantAnalysis())
regressors.append(XGBRegressor())

# 不同机器学习交叉验证结果汇总
cv_results = []
for regressor in regressors:
    cv_results.append(cross_val_score(estimator=regressor, X=X_train, y=y_train, 
                                      scoring='neg_mean_squared_error', 
                                      cv=kfold, n_jobs=-1))
    
# 求出模型得分的均值和标准差
cv_means = []
cv_std = []

for cv_result in cv_results:
    cv_means.append(cv_result.mean())
    cv_std.append(cv_result.std())

# 汇总数据
cvResDf = pd.DataFrame({'cv_mean': cv_means,
                        'cv_std': cv_std,
                        'algorithm':['SVC','DecisionTreeReg','RandomForestReg','ExtraTreesReg',
                                  'GradientBoostingReg','KNN','LR','LDA', 'XGB']})
cvResDf

在这里插入图片描述

bar = sns.barplot(data=cvResDf.sort_values(by='cv_mean', ascending=False),
                  x='cv_mean', y='algorithm', **{'xerr': cv_std})
bar.set(xlim=(0.7, 0.9))

在这里插入图片描述

4.3 深度学习效果

tesorflow

import keras
d_model = keras.models.Sequential()
d_model.add(keras.layers.Dense(units=256, activation='relu', input_shape=(X_train_scaler.shape[1:])))
d_model.add(keras.layers.Dense(units=128, activation='relu'))
d_model.add(keras.layers.Dense(units=1))

out_put_dir = './'
if not os.path.exists(out_put_dir):
    os.mkdir(out_put_dir)
out_put_file = os.path.join(out_put_dir, 'model.keras')

callbacks = [
    keras.callbacks.TensorBoard(out_put_dir),
    keras.callbacks.ModelCheckpoint(out_put_file, save_best_only=True, save_weights_only=True),
    keras.callbacks.EarlyStopping(patience=5, min_delta=1e-3)
]

d_model.compile(optimizer='Adam', loss='mean_squared_error', metrics=['mse'])
history = d_model.fit(X_train_scaler, y_train, epochs=100, validation_data=(X_valid_scaler, y_valid), callbacks=callbacks)

在这里插入图片描述

pytorch

import pandas as pd
import torch
from torch import nn

data = pd.read_csv('XXX.csv', header=None)
print(data.head())
X = data.iloc[:, :-1]
print(X.shape)
Y = data.iloc[:, -1]
Y.replace(-1, 0, inplace=True)
print(Y.value_counts())
X = torch.from_numpy(X.values).type(torch.FloatTensor)
Y = torch.from_numpy(Y.values.reshape(-1, 1)).type(torch.FloatTensor)
model = nn.Sequential(
    nn.Linear(15, 1),
    nn.Sigmoid()
)
print(model)

loss_fn = nn.BCELoss()
opt = torch.optim.SGD(model.parameters(), lr=0.0001)
batch_size = 32
steps = X.shape[0] // batch_size
for epoch in range(1000):
    for batch in range(steps):
        start = batch * batch_size
        end = start + batch_size
        x = X[start:end]
        y = Y[start:end]
        y_pred = model(x)
        loss = loss_fn(y_pred, y)
        opt.zero_grad()
        loss.backward()
        opt.step()

print(model.state_dict())

accuracy = ((model(X).data.numpy() > 0.5) == Y.numpy()).mean()
print('accuracy = ', accuracy)

在这里插入图片描述

5 模型优化

选出相对表现优秀的模型进行优化,经过调参和工程反复应用情况,选择最优模型

5.1 网络搜索

  • DecisionTreeRegressor模型
#DecisionTreeRegressor模型
GTR = DecisionTreeRegressor()
gb_param_grid = {
              'criterion': ['squared_error', 'friedman_mse', 'absolute_error', 'poisson'],
              'splitter': ['best', 'random'],
              'max_depth': [4, 8],
              'min_samples_leaf': [100,150],
              'max_features': [0.3, 0.1] 
              }
modelgsGTR = GridSearchCV(GTR,param_grid = gb_param_grid, cv=kfold, 
                                     scoring="neg_mean_squared_error", n_jobs= -1, verbose = 1)
modelgsGTR.fit(X_train,y_train)
modelgsGTR.best_score_
  • xgboost
import xgboost as xgb

params = {'objective':'reg:linear',
          'booster':'gbtree',
          'eta':0.03,
          'max_depth':10,
          'subsample':0.9,
          'colsample_bytree':0.7,
          'silent':1,
          'seed':10}
num_boost_round = 6000
dtrain = xgb.DMatrix(X_train, y_train)
dtest = xgb.DMatrix(X_test, y_test)

evals = [(dtrain, 'train'), (dtest, 'validation')]

gbm = xgb.train(params, # 模型参数
                dtrain, # 训练数据
                num_boost_round, # 轮次,决策树的个数
                evals=evals, # 验证,评估的数据
                early_stopping_rounds=100, # 在验证集上,当连续n次迭代,分数没有提高后,提前终止训练
                verbose_eval=True) # 打印输出log日志,每次训练详情

5.2 正则化

在这里插入图片描述
作用:

  1. 抵制w无限增大,防止溢出
  2. 减少训练集与测试集之间的结果差异,防止过拟合
  3. 或多或少影响训练集的效果

L2使得所有w均变小
L1使得最不重要的特征维度变小,增强泛化能力,也起到降维的作用。L1在实际应用中较多。

6 模型评估

在这里插入图片描述

  • Accuracy 准确率:模型预测正确结果所占的比例,容易受到正负样本不平衡时影响
    在这里插入图片描述

  • Precision 精确率:模型预测为正样本占实际正样本的比例,容易受到所选阈值的影响。希望事务精准发生,对精确率要求相对较高(比如推送广告)
    在这里插入图片描述

  • Recall 召回率:正样本占所有模型预测为正样本的比例,容易受到所选阈值的影响。希望负面或不好的事务不发生,对召回率要求相对较高(比如投送涉及黄、赌、毒的内容文章)
    在这里插入图片描述

  • F1 score (F1):模型精确率和召回率的一种加权平均,它的最大值是1,最小值是0
    在这里插入图片描述

  • ROC/AUC (Receiver Operating characteristic 接收者操作特征曲线, Area Under Carve 曲线下面积)
    ROC的曲线由所有阈值点theta组成,其下面积越大说明分类效果越好

在这里插入图片描述

thresholds = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
recalls = [] # 召回率
precisions = [] # 精确度
aucs = [] # 曲线下面积
y_pred_proba = grid_search.predict_proba(X_test)
for threshold in thresholds:
    y_ = y_pred_proba[:,1] >= threshold
    cm = confusion_matrix(y_test,y_)
    # TP/(TP + FN)
    recalls.append(cm[1,1]/(cm[1,0] + cm[1,1])) # 召回率
    # TP/(TP + FP)
    precisions.append(cm[1,1]/(cm[0,1] + cm[1,1])) # 精确率
    fpr,tpr,_ = roc_curve(y_test,y_)
    auc_ = auc(fpr,tpr)
    aucs.append(auc_)
    
plt.figure(figsize=(12,6))
plt.plot(thresholds,recalls,label = 'Recall')
plt.plot(thresholds,aucs,label = 'auc')
plt.plot(thresholds,precisions,label = 'precision')
plt.legend()
plt.xlabel('thresholds')

在这里插入图片描述

  • Log loss 损失函数

    • 线性回归(MES 均方误差)
      Log Loss = - 1.0 ( target log(prediction) + (1 - target) * log(1 - prediction) )
    • 逻辑回归(交叉熵)
      在这里插入图片描述
      在这里插入图片描述

请尊重别人的劳动成果 转载请务必注明出处

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/321141.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Minio安装及整合SpringBoot

一. MinIO概述 官网地址:https://minio.org.cn MinIO是一款基于Apache License v2.0开源协议的分布式文件系统(或者叫对象存储服务),可以做为云存储的解决方案用来保存海量的图片、视频、文档等。由于采用Golang实现,服…

《Git学习笔记:Git入门 常用命令》

1. Git概述 1.1 什么是Git? Git是一个分布式版本控制工具,主要用于管理开发过程中的源代码文件(Java类、xml文件、html页面等),在软件开发过程中被广泛使用。 其它的版本控制工具 SVNCVSVSS 1.2 学完Git之后能做…

数据在AI任务中的决定性作用:以图像分类为例

人工智能的学习之路非常漫长,不少人因为学习路线不对或者学习内容不够专业而举步难行。不过别担心,我为大家整理了一份600多G的学习资源,基本上涵盖了人工智能学习的所有内容。点击下方链接,0元进群领取学习资源,让你的学习之路更加顺畅!记得…

基于SSM的法律咨询系统的设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…

虾皮shopee根据ID取商品详情 API (shopee.item_get)

Shopee 是一个流行的电商平台,提供了 API 来允许开发者与平台进行交互。如果你想通过 API 根据商品 ID 获取商品详情,你可以使用 Shopee 的 item_get API。 以下是使用 Shopee 的 item_get API 根据商品 ID 获取商品详情的步骤: 获取 API 密…

希尔排序和计数排序

📑前言 本文主要是【排序】——希尔排序、计数排序的文章,如果有什么需要改进的地方还请大佬指出⛺️ 🎬作者简介:大家好,我是听风与他🥇 ☁️博客首页:CSDN主页听风与他 🌄每日一句…

音频编辑软件:Studio One 6 中文

Studio One 6是一款功能强大的数字音乐制作软件,为用户提供一站式音乐制作解决方案。它具有直观的界面和强大的音频录制、编辑、混音和制作功能,支持虚拟乐器、效果器和第三方插件,可帮助用户实现高质量的音乐创作和制作。同时,St…

verilog编程题

verilog编程题 文章目录 verilog编程题序列检测电路(状态机实现)分频电路计数器译码器选择器加减器触发器寄存器 序列检测电路(状态机实现) module Detect_101(input clk,input rst_n,input data,o…

高防云主机安全解决方案

全球防护 高防云服务器支持区域覆盖中国大陆和海外地区,包括北京、上海、广州和中国香港等地。通过组合DDoS高防包和对应地区的CVM资源,可提供T级的单地区防护能力。 稳定可靠 兼顾防护和性能,DDoS提供实时防护,清洗成功率达99…

vulnhub靶场之DC-8

一.环境搭建 1.靶场描述 DC-8 is another purposely built vulnerable lab with the intent of gaining experience in the world of penetration testing. This challenge is a bit of a hybrid between being an actual challenge, and being a "proof of concept&quo…

【含完整代码】Java定时任务之xxl-job[超详细]

前言 个人博客:www.wdcdbd.com 在Java中使用定时任务是一件很常见的事情,比如使用定时任务在什么时间,什么时候,去发布一些信息,或者去查询一些日志等相关的代码。这时,我们就要开发定时任务这中功能来实现…

UNRAID 优盘制作

使用方法和开心方法: 如果重启之后显示器有信号但是黑屏无法正常引导系统,此为九代以后主板快速开机(快速引导)UNRAID并不支持快速引导所以会直接卡黑屏。所以发现这种情况的时候请进BIOS关闭和开机快速引导或和快有关系的任何开…

LeetCode 589. N 叉树的前序遍历

589. N 叉树的前序遍历 给定一个 n 叉树的根节点 root ,返回 其节点值的 前序遍历 。 n 叉树 在输入中按层序遍历进行序列化表示,每组子节点由空值 null 分隔(请参见示例)。 示例 1: 输入:root [1,nul…

扩散模型(二)——DDIM学习笔记-大白话推导

扩散模型系列: (1)扩散模型(一)——DDPM推导笔记-大白话推导 (2)扩散模型(二)——DDIM学习笔记-大白话推导 请提前关注,后续待更新,谢谢… 写在前面: (1)建议…

leetcode238:除自身以外数组的乘积

文章目录 1.使用除法(违背题意)2.左右乘积列表3.空间复杂度为O(1)的方法 在leetcode上刷到了这一题,一开始并没有想到好的解题思路,写篇博客再来梳理一下吧。 题目要求: 不使用除法在O(n)时间复杂度内 1.使用除法&am…

vue3 模版语法

模板语法 Vue 使用一种基于 HTML 的模板语法&#xff0c;使我们能够声明式地将其组件实例的数据绑定到呈现的 DOM 上。 文本插值 最基本的数据绑定形式是文本插值&#xff0c;它使用的是“Mustache”语法 (即双大括号)&#xff1a; <span>Message: {{ msg }}</span&…

Netty-Netty实现自己的通信框架

通信框架功能设计 功能描述 通信框架承载了业务内部各模块之间的消息交互和服务调用&#xff0c;它的主要功能如下&#xff1a; 基于 Netty 的 NIO 通信框架&#xff0c;提供高性能的异步通信能力&#xff1b; 提供消息的编解码框架&#xff0c;可以实现 POJO 的序列化和反…

Qt编译OpenCV

1.CMake下载安装 官网地址&#xff1a;CMake - Upgrade Your Software Build System &#xff08;1&#xff09;下载后双击安装 &#xff08;2&#xff09;进入安装界面&#xff0c;点击【Next】 &#xff08;3&#xff09;同意协议&#xff0c;点击【Next】 &#xff08;4&a…

鸿蒙Harmony-线性布局(Row/Column)详解

人生的下半场&#xff0c;做个简单的人&#xff0c;少与人纠缠&#xff0c;多看大自然&#xff0c;在路上见世界&#xff0c;在途中寻自己。往后余生唯愿开心健康&#xff0c;至于其他&#xff0c;随缘就好&#xff01; 目录 一&#xff0c;定义 二&#xff0c;基本概念 三&am…

c++多久会被Python或者新语言取代?

c多久会被Python或者新语言取代&#xff1f; 在开始前我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「c的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共享给大家&#xff01;&#xff01;&am…