机器学习入门知识

 一、引言

        机器学习是当前信息技术中最令人振奋的领域之一。在这门课程中,我们将探索该技术的前沿,并能够亲自实现机器学习的算法。

        或许你每天都在不知不觉中使用了机器学习的算法。每次你打开谷歌或必应搜索你需要的内容,正是因为它们拥有出色的学习算法。每次你使用Facebook或苹果的图片分类程序,它能够识别出你朋友的照片,这也是机器学习的应用。每次你阅读电子邮件时,垃圾邮件过滤器能够帮助你过滤大量的垃圾邮件,这同样是一种学习算法。

        这里有一些机器学习的案例。比如,数据库挖掘。机器学习被用于数据挖掘的原因之一是网络和自动化技术的增长,这意味着我们拥有历史上最大的数据集。例如,许多硅谷公司正在收集网络上的点击数据(也称为点击流数据),并尝试使用机器学习算法来分析数据,以更好地了解用户并提供更好的服务,这在硅谷有着巨大的市场。另一个例子是医疗记录。随着自动化的出现,我们现在有了电子医疗记录。如果我们可以将医疗记录转化为医学知识,我们就可以更好地理解疾病。再比如计算生物学。还是因为自动化技术,生物学家们收集了大量的基因数据序列、DNA序列等等,通过运行算法让我们更好地了解人类基因组,这对全人类来说意义重大。另外,在工程领域,我们在各个领域都有越来越大的数据集,我们试图使用学习算法来理解这些数据。此外,在机械应用中,有些人无法直接操作。例如,有人已经在无人直升机领域工作了许多年,他们不知道如何编写一段程序让直升机自己飞行,他们唯一能做的就是让计算机自己学习如何驾驶直升机。

        事实上,如果你研究过自然语言处理或计算机视觉,你会发现这些语言理解或图像理解都属于AI领域,大部分的自然语言处理和大部分的计算机视觉都应用了机器学习。学习算法还广泛用于自定制程序,每次你去亚马逊时,它都会给出其他电影、产品或音乐的建议,这就是一种学习算法。仔细想一想,他们有数百万的用户,但他们没有办法为数百万用户编写数百万个不同的程序。软件能够为这些自定制的建议提供的唯一方法是通过学习你的行为来为你定制服务。

二、机器学习是什么       

        机器学习是一种人工智能的分支,它致力于研究如何使计算机能够从数据中学习并做出预测或决策。通过使用各种算法和技术,机器学习可以使计算机自动地从经验中提取规律和模式,并根据这些规律和模式进行预测、分类、聚类等任务。在机器学习中,我们通常将数据集分为训练集和测试集。训练集用于训练模型,使其能够学习到数据中的规律和模式;测试集用于评估模型的性能和泛化能力。通过反复调整模型的参数和算法的选择,我们可以不断提高模型的准确性和性能。

        监督学习和无监督学习是机器学习中的两种主要类型。监督学习是指给定一组输入数据和对应的输出标签,通过训练模型来学习输入与输出之间的映射关系。常见的监督学习任务包括分类和回归。无监督学习是指只给定一组输入数据,没有对应的输出标签,通过训练模型来发现数据中的结构和模式。常见的无监督学习任务包括聚类和降维。

        除了监督学习和无监督学习,还有其他类型的学习算法,如强化学习和推荐系统。强化学习是指通过与环境的交互来学习如何做出最优的行动策略。推荐系统是指根据用户的历史行为和偏好,为用户推荐个性化的内容或产品。

        在实际应用中,选择合适的学习算法和模型是非常重要的。不同的问题和数据集可能需要不同的算法和方法来解决。因此,了解各种学习算法的原理和应用范围,以及如何根据实际情况进行选择和调优,对于设计和构建有效的机器学习系统至关重要。

        讲一个通俗易懂的例子,Barret编写了一个西洋棋程序,这程序神奇之处在于,Barret自己并不是个下棋高手,但因为他太菜了,于是就通过编程,让西洋棋程序自己跟自己下了上万盘棋。通过观察哪种布局(棋盘位置)会赢,哪种布局会输,久而久之,这西洋棋程序明白了什么是好的布局,什么样是坏的布局,然后就牛逼大发了,程序通过学习后,玩西洋棋的水平超过了Barret。

        一个程序被认为能从经验E中学习,解决任务T,达到性能度量值P,当且仅当,有了经验E后,经过P评判,程序在处理T时的性能有所提升。结合上述例子,我认为经验E就是程序上万次的自我练习的经验,而任务T 就是下棋,性能度量值P就是它在与一些新的对手比赛时,赢得比赛的概率。

三、监督学习

监督学习是已经知道数据的label,例如预测房价问题,其中给出了房子的面积和价格。

  • 回归问题预测连续值的输出,例如预测房价。

  • 分类问题是预测离散值输出,例如判断肿瘤是良性还是恶性。

四、无监督学习

无监督学习是不知道数据具体的含义,比如给定一些数据但不知道它们具体的信息,对于分类问题无监督学习可以得到多个不同的聚类,从而实现预测的功能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/320780.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

FFmpeg技术详解

FFmpeg技术详解 本文概不介绍相关安装配置,详情请入官方或者其他大佬博客,此处做出推荐: https://ffmpeg.org/ FFmpeg官网 https://ffmpeg.github.net.cn/developer.html FFmpeg中文文档 https://blog.csdn.net/m0_47449768/article/details/…

以太网抓包软件Wireshake应用介绍( SMART PLC MODBUSTCP通信)

首先介绍下常看到的字符ACK,ACK是确认字符,在数据通信中,接收站发给发送站的一种传输类控制字符,表示发来的数据已确认接收无误。在TCP/IP协议中,如果接收方成功的接收到数据,会回复一个ACK数据。通常ACK信号有自己固定的格式,长度大小,由接收方回复给发送方。ACK在TCP的…

Github Copilot最全的安装与使用教程:一款非常好用的AI编程工具

Github Copilot最全的安装与使用教程 第一章 安装1.安装 GitHub Copilot2.获取资格第二章 使用1.产生建议1.1 键入你想要完成的操作的注释1.2 CtrlI 2. 接受建议3.查看下一个建议3.接受部分建议4.在新选项卡接受建议5.完成多项功能6.聊天 GitHub Copilot 供经过验证的学生、教师…

AI绘画风格化实战

在社交软件和短视频平台上,我们时常能看到各种特色鲜明的视觉效果,比如卡通化的图片和中国风的视频剪辑。这些有趣的风格化效果其实都是图像风格化技术的应用成果。 风格化效果举例 MidLibrary 这个网站提供了不同的图像风格,每一种都带有鲜…

【前端性能优化】如何取消http请求

文章目录 需要取消http请求的3种经典场景原生XMLHttpRequest取消http请求fetch取消http请求axios取消http请求哪些情况需要取消HTTP请求取消http请求能带来哪些性能提升 需要取消http请求的3种经典场景 场景一:有一个实时搜索功能,每当用户输入内容改变的…

构建中国人自己的私人GPT-有道GPT

创作不易,请大家多鼓励支持。 在现实生活中,很多人的资料是不愿意公布在互联网上的,但是我们又要使用人工智能的能力帮我们处理文件、做决策、执行命令那怎么办呢?于是我们构建自己或公司的私人GPT变得非常重要。 先看效果 一、…

训练AI模型:寻找最优参数a和b

人工智能的学习之路非常漫长,不少人因为学习路线不对或者学习内容不够专业而举步难行。不过别担心,我为大家整理了一份600多G的学习资源,基本上涵盖了人工智能学习的所有内容。点击下方链接,0元进群领取学习资源,让你的学习之路更加顺畅!记得…

基于面向对象,C++实现双链表

双链表同单链表类似,由一个值和两个指针组成 Node.h节点头文件 #pragma once class Node { public:int value;Node* prev;Node* next;Node(int value);~Node(); };Node.cpp节点源文件 #include "Node.h"Node::Node(int value) {this->value value…

深度学习笔记(六)——网络优化(2):参数更新优化器SGD、SGDM、AdaGrad、RMSProp、Adam

文中程序以Tensorflow-2.6.0为例 部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。 截图和程序部分引用自北京大学机器学习公开课 在前面的博文中已经学习了构建神经网络的基础需求,搭建了一个简单的双层网络结构来实现数据的分…

【设计模式】什么场景可以考虑使用简单工厂模式

1.概述 工厂模式是一种创建型模式,主要作用就是创建对象,将对象的创建过程和使用的过程进行解耦。我们平时说的工厂模式实际上是对三种不同类型的工厂模式的统称,简单工厂、工厂方法、抽象工厂,而在23种设计模式中,只…

VSCode编写 C/C++ 程序

VSCode 全称 Visual Studio Code,是微软出的一款轻量级代码编辑器,免费、开源而且功能强大。它支持几乎所有主流的程序语言的语法高亮、智能代码补全、自定义热键、括号匹配、代码片段、代码对比 Diff、GIT 等特性,支持插件扩展,并…

SG-8101CGA 系列 (晶体振荡器 可编程 可用 +125°C )

SG-8101CGA是可编程晶体振荡器,具有CMOS输出,适用于汽车,同时,该系列还提供相同的频率和其他参数的轻松编程能力,符合AEC-Q100标准,具有出色的电磁兼容性和稳定性,可以在各种环境下使用。外部尺…

Linux下编写zlg7290驱动(1)

大家好,今天给大家介绍Linux下编写zlg7290驱动(1),文章末尾附有分享大家一个资料包,差不多150多G。里面学习内容、面经、项目都比较新也比较全!可进群免费领取。 在智能仪表中,经常会用到键盘、数码管等外设。因此&…

Windows Server 2012 R2部署项目

JDK 下载JDK 1.直接官网下载:http://www.oracle.com/; 2.我用的是1.8,阿里云盘分享地址:https://www.aliyundrive.com/s/u4V9x1AHL2r 安装jdk 双击安装点击下一步如果不改变路径就一直下一步 安装完成直接点击关闭即可&#x…

高光谱分类论文解读分享之基于形态卷积神经网络的高光谱影像分类

IEEE TGRS 2021:基于形态卷积神经网络的高光谱影像分类 题目 Morphological Convolutional Neural Networks for Hyperspectral Image Classification 作者 Swalpa Kumar Roy; Ranjan Mondal; Mercedes E. Paoletti; Juan M. Haut; Antonio Plaza 关键词 Clas…

鸿蒙开发基础-Web组件之cookie操作

使用ArkTS语言实现一个简单的免登录过程,向大家介绍基本的cookie管理操作。主要包含以下功能: 获取指定url对应的cookie的值。设置cookie。清除所有cookie。免登录访问账户中心。 cookie读写操作 首次打开应用时,应用首页的Web组件内呈现的…

【OJ】环形链表

目录 1. 环形链表||(142)1.1 题目描述1.2 题目分析1.3 代码 2. 环形链表(141)2.1 题目描述2.2 题目分析2.3 代码 1. 环形链表||(142) 1.1 题目描述 1.2 题目分析 带环链表:尾节点的next指向链…

Windows之任意文件删除到提权

前言 ZDI 发表过从任意文件夹删除到提权的利用过程,还提供了任意文件删除到提权的利用过程,所以一字之差但是漏洞利用方式也是有细微偏差的。 这里把任意文件删除和任意文件夹删除漏洞提权结合起来分析,是因为其最后的利用过程是一样的&…

第二节课 书生·浦语大模型趣味 Demo笔记及作业

文章目录 笔记作业基础作业:进阶作业: 笔记 书生浦语大模型InternLM-Chat-7B 智能对话 Demo:https://blog.csdn.net/m0_49289284/article/details/135412067书生浦语大模型Lagent 智能体工具调用 Demo:https://blog.csdn.net/m0_…