imgaug库指南(22):从入门到精通的【图像增强】之旅

引言

在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的关键所在。而imgaug,作为一个功能强大的图像增强库,为我们提供了简便且高效的方法来扩充数据集。本系列博客将带您深入了解如何运用imgaug进行图像增强,助您在深度学习的道路上更进一步。我们将从基础概念讲起,逐步引导您掌握各种变换方法,以及如何根据实际需求定制变换序列。让我们一起深入了解这个强大的工具,探索更多可能性,共同推动深度学习的发展。


前期回顾

链接主要内容
imgaug库指南(11):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 加性高斯噪声(AdditiveGaussianNoise方法)
imgaug库指南(12):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 加性拉普拉斯噪声(AdditiveLaplaceNoise方法)
imgaug库指南(13):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 加性泊松噪声(AdditivePoissonNoise方法)
imgaug库指南(14):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 乘法运算(Multiply方法)
imgaug库指南(15):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 乘法运算(MultiplyElementwise方法)
imgaug库指南(16):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— Cutout方法
imgaug库指南(17):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— Dropout方法
imgaug库指南(18):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— CoarseDropout方法
imgaug库指南(19):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— Dropout2D方法
imgaug库指南(20):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— TotalDropout方法

在本博客中,我们将向您详细介绍imgaug库的数据增强方法 —— ImpulseNoise方法


ImpulseNoise方法

功能介绍

iaa.ImpulseNoiseimgaug库中的一个方法,用于向图像添加脉冲噪声。脉冲噪声是一种模拟信号中的突发错误,它表现为图像中随机分布的黑白点。在数字图像处理中,添加脉冲噪声可以模拟图像在传输或获取过程中可能遇到的干扰。以下是三个使用场景举例:

  1. 鲁棒性测试:在开发图像处理或计算机视觉算法时,了解模型对于噪声的鲁棒性至关重要。通过在训练或测试集中引入iaa.ImpulseNoise,可以模拟真实世界中可能遇到的图像质量问题,从而评估算法在面对噪声时的性能。这对于开发能够在各种环境下稳定运行的可靠系统至关重要。

  2. 数据增强:在深度学习中,数据增强是一种常用的技术,用于通过应用各种变换来增加训练数据集的多样性。iaa.ImpulseNoise可以用作数据增强的一种手段,通过向图像中添加随机噪声来增加模型的泛化能力。这有助于训练出更加健壮的模型,因为模型需要学会处理包含噪声的输入数据。

  3. 模拟传感器缺陷:在某些应用中,图像可能由质量不高的传感器捕获,这些传感器可能由于硬件限制或环境条件而产生脉冲噪声。通过使用iaa.ImpulseNoise,可以模拟这些传感器缺陷,从而在实验室环境中测试算法对这些噪声的容忍度。这对于开发针对特定硬件或环境条件的图像处理系统特别有用。

语法

import imgaug.augmenters as iaa
aug = iaa.ImpulseNoise(p=(0.0, 0.03), seed=None, name=None, random_state='deprecated', deterministic='deprecated')

以下是对iaa.ImpulseNoise方法中各个参数的详细介绍:

  1. p

    • 类型:可以是浮点数|浮点数元组|浮点数列表。
    • 描述:将像素替换为脉冲噪声的概率。
      • p为浮点数,则表示像素替换为脉冲噪声的概率;
      • p为元组(a, b),则像素替换为脉冲噪声的概率为从区间[a, b]中采样的随机数;
      • p为列表,则像素替换为脉冲噪声的概率为从列表中随机采样的浮点数;
  2. seed

    • 类型:整数|None
    • 描述:用于设置随机数生成器的种子。如果提供了种子,则结果将是可重复的。默认值为None,表示随机数生成器将使用随机种子。
  3. name

    • 类型:字符串或None
    • 描述:用于标识增强器的名称。如果提供了名称,则可以在日志和可视化中识别该增强器。默认值为None,表示增强器将没有名称。

示例代码

  1. 使用不同的p
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt

# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# 创建数据增强器
aug1 = iaa.ImpulseNoise(p=0.2, seed=0)
aug2 = iaa.ImpulseNoise(p=0.5, seed=0)
aug3 = iaa.ImpulseNoise(p=0.8, seed=0)

# 对图像进行数据增强
Augmented_image1 = aug1(image=image)
Augmented_image2 = aug2(image=image)
Augmented_image3 = aug3(image=image)

# 展示原始图像和数据增强后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(Augmented_image1)
axes[0][1].set_title("Augmented Image1")
axes[1][0].imshow(Augmented_image2)
axes[1][0].set_title("Augmented Image2")
axes[1][1].imshow(Augmented_image3)
axes[1][1].set_title("Augmented Image3")
plt.show()

运行结果如下:

图1 原图及数据增强结果可视化(使用不同的p参数)

可以从图1看到:当p参数设置的越接近1.0时,图像增强后的新图像将会出现更多的脉冲噪声。

注意事项

  1. p的选择p参数决定了一副图像脉冲噪声的强度。较大的p值可能会导致新图像出现严重失真。需要根据具体场景选择合适的p
  2. 随机性和可复现性(seed):如果需要可复现的结果,应该设置seed参数为一个固定的整数值。这将初始化随机数生成器,使得每次运行增强操作时都能得到相同的结果;
  3. 与其他增强操作的组合iaa.ImpulseNoise可以与其他imgaug增强操作组合使用,以创建更复杂的增强管道。在组合多个增强操作时,应注意它们的顺序,因为不同的顺序可能会导致不同的最终效果。

总结

iaa.ImpulseNoiseimgaug库中的一个方法,用于向图像添加脉冲噪声。该方法通过随机选择像素点并将其设置为噪声值,以模拟图像在传输或获取过程中可能遇到的突发错误。使用iaa.ImpulseNoise可以模拟真实世界中图像可能遇到的干扰,提高算法的鲁棒性。同时,它还可以作为数据增强手段,增加训练数据集的多样性,从而训练出更加健壮的模型。此外,在模拟传感器缺陷的场景中,该方法可以用于测试算法对脉冲噪声的容忍度。


小结

imgaug是一个顶级的图像增强库,具备非常多的数据增强方法。它为你提供创造丰富多样的训练数据的机会,从而显著提升深度学习模型的性能。通过精心定制变换序列和参数,你能灵活应对各类应用场景,使我们在处理计算机视觉的数据增强问题时游刃有余。随着深度学习的持续发展,imgaug将在未来持续展现其不可或缺的价值。因此,明智之举是将imgaug纳入你的数据增强工具箱,为你的项目带来更多可能性。

参考链接


结尾

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见,因为这对我们来说意义非凡。
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果您觉得我们的博文给您带来了启发,那么,希望能为我们点个免费的赞/关注您的支持和鼓励是我们持续创作的动力
请放心,我们会持续努力创作,并不断优化博文质量,只为给带来更佳的阅读体验。
再次感谢的阅读,愿我们共同成长,共享智慧的果实!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/318908.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

汽车雷达:实时SAR成像的实现

摘要: 众所周知,点云成像是目前实现汽车雷达感知最流行的方案,尤其是采用多级联实现的4D点云成像雷达,这是目前最有希望实现产品落地的技术方案之一。 今天重点分享关于汽车雷达SAR成像相关技术内容,这也证实了4D点云成像雷达并不一定就是汽车雷达成像唯一的方案,在业内…

CPU告警不用愁,用C语言编写CPU使用率限制程序

现在云服务已经深入千家万户了,不仅商用,私用也很多。很多云服务厂商也都有配套的服务器安全模块,可以检测网络流量异常、内存占用量和CPU占用率,并且允许人工设置告警阈值。例如,CPU持续大于90%10分钟,那么…

14、强化学习Soft Actor-Critic算法:推导、理解与实战

基于LunarLander登陆器的Soft Actor-Critic强化学习(含PYTHON工程) Soft Actor-Critic算法是截至目前的T0级别的算法了,当前正在学习,在此记录一下下。 其他算法: 07、基于LunarLander登陆器的DQN强化学习案例&#…

微信小程序(三)页面配置与全局配置

注释很详细,直接上代码 新增内容: 页面导航栏的属性配置全局页面注册配置全局导航栏配置样式版本 源码:(标准的json是不能加注释的,但为了方便理解咱做个违背标准的决定) 页面:index.json {//这里是页面的配置文件&am…

LAMA Inpaint:大型掩模修复

文章目录 一、大掩模修复(LaMa)简介二、大掩模修复(LaMa)的主要方法三、快速傅里叶卷积的修补网络四、损失函数五、训练中的动态掩膜生成 一、大掩模修复(LaMa)简介 LaMa方法的提出背景:现代图…

py连接sqlserver数据库报错问题处理。20009

报错 pymssql模块连接sqlserver出现如下错误: pymssql._pymssql.OperationalError) (20009, bDB-Lib error message 20009, severity 9:\nUnable to connect: Adaptive Server is unavailable or does not exist (passwordlocalhost)\n) 解决办法: 打…

【蓝桥杯日记】第一篇——系统环境的搭建

目录 前言 环境相关文件 学生机环境-Web应用开发环境(第十五届大赛) 学生机环境-Java编程环境(第十五届大赛) 学生机环境-C/C编程环境(第十五届大赛) 学生机环境-Python编程环境 (第十五届…

【数据结构】八大排序之计数排序算法

🦄个人主页:修修修也 🎏所属专栏:数据结构 ⚙️操作环境:Visual Studio 2022 目录 一.计数排序简介及思想 二.计数排序代码实现 三.计数排序复杂度分析 📌时间复杂度 📌空间复杂度 结语 一.计数排序简介及思想 计数排序(Cou…

一个月带你手撕LLM理论与实践,并获得面试or学术指导!

大家好,我是zenRRan,是本号的小号主。 从该公众号的名字就能看出,运营已经好多年了,这些年当中直接或间接帮助很多同学从NLP入门到进阶,理论到实践,学校到企业,本科到硕士甚至博士。 每天习惯性…

【K12】Python写分类电阻问题的求解思路解析

分压电阻类电路问题python程序写法 一个灯泡的电阻是20Ω,正常工作的电压是8V,正常工作时通过它的电流是______A。现在把这个灯泡接到电压是9V的电源上,要使它正常工作,需要给它______联一个阻值为______的分压电阻。 解决思想 …

深度学习基本介绍-李沐

目录 AI分类:模型分类:广告案例: bilibili视频链接:https://www.bilibili.com/video/BV1J54y187f9/?p2&spm_id_frompageDriver&vd_sourcee6a6e7fec41c59c846c142eb5ef1da0b AI分类: 模型分类: 图…

初识 Elasticsearch 应用知识,一文读懂 Elasticsearch 知识文集(3)

🏆作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。 🏆多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。 🎉欢迎 👍点赞✍评论…

《现代C++语言核心特性解析》笔记草稿

仅供学习记录之用,谢绝转发 第1章 新基础类型(C11~C20) 1.1 整数类型long long 更多笔记 “在C中应该尽量少使用宏,用模板取而代之是明智的选择。C标准中对标准库头文件做了扩展,特化了long long和unsi…

【AIGC】Controlnet:基于扩散模型的文生图的可控性

前言 controlnet可以让stable diffusion的生图变得可控。 文章连接:https://arxiv.org/pdf/2302.05543.pdf 摘要 冻结了stable diffusion的预训练模型并重用它的预训练编码层神经网络结构与零初始化卷积层连接,从零开始逐渐增加参数,并确…

python入门,数据容器:set集合

set最大的特点就是不支持重复元素,可以进行元素的去重处理,但不有序,不保证元素顺序正确 所以就不能使用下标索引的访问 1.集合的定义 集合的定义使用的是大括号{ } 对ok这个字符串进行了去重 2.add添加新元素 3.remove移除元素 4.pop随机…

鸿蒙Harmony--AppStorage--应用全局的UI状态存储详解

无所求必满载而归,当你降低期待,降低欲望,往往会得到比较好的结果,把行动交给现在,用心甘情愿的态度,过随遇而安的生活,无论结果如何,都是一场惊喜的获得! 目录 一,定义 …

浅析Linux进程地址空间

前言 现代处理器基本都支持虚拟内存管理,在开启虚存管理时,程序只能访问到虚拟地址,处理器的内存管理单元(MMU)会自动完成虚拟地址到物理地址的转换。基于虚拟内存机制,操作系统可以为每个运行中的进程创建…

DHCP中继【新华三】

理论【DHCP服务器可以对其直连的网段中的pc,分配其IP地址等服务,但是,对于跨网段进行分配IP地址,需要中间有DHCP中继进行传达,由DHCP中继指定DHCP服务器的位置,可以很好的对其跨网段分配IP地址起到指引的作…

如何激活数据要素价值

文章目录 前言一、数据作为生产要素的背景二、数据作为新型生产要素,是价值创造的重要源泉(一)生产要素是经济活动中的基本要素(二)激活数据要素价值,要从理论上认识数据要素的基本特征(三&…

爬虫—中信证券资管产品抓取

爬虫—中信证券资管产品抓取 中信证券资管产品板块网址:http://www.cs.ecitic.com/newsite/cpzx/jrcpxxgs/zgcp/ 页面截图如下: 目标:抓取上图中红框内的所有资产信息 按F12进入开发者工具模式,在Elements板块下,在…