【LangChain学习之旅】—(8) 输出解析:用OutputParser生成鲜花推荐列表

【LangChain学习之旅】—(8) 输出解析:用OutputParser生成鲜花推荐列表

  • LangChain 中的输出解析器
  • Pydantic(JSON)解析器实战
    • 第一步:创建模型实例
    • 第二步:定义输出数据的格式
    • 第三步:创建输出解析器
  • 第四步:创建提示模板

Reference:LangChain 实战课

LangChain 中的输出解析器

语言模型输出的是文本,这是给人类阅读的。但很多时候,你可能想要获得的是程序能够处理的结构化信息。这就是输出解析器发挥作用的地方。

输出解析器是一种专用于处理和构建语言模型响应的类。一个基本的输出解析器类通常需要实现两个核心方法。

  • get_format_instructions:这个方法需要返回一个字符串,用于指导如何格式化语言模型的输出,告诉它应该如何组织并构建它的回答。
  • parse:这个方法接收一个字符串(也就是语言模型的输出)并将其解析为特定的数据结构或格式。这一步通常用于确保模型的输出符合我们的预期,并且能够以我们需要的形式进行后续处理。

还有一个可选的方法。

  • parse_with_prompt:这个方法接收一个字符串(也就是语言模型的输出)和一个提示(用于生成这个输出的提示),并将其解析为特定的数据结构。这样,你可以根据原始提示来修正或重新解析模型的输出,确保输出的信息更加准确和贴合要求。

下面是一个基于上述描述的简单伪代码示例:

class OutputParser:
    def __init__(self):
        pass

    def get_format_instructions(self):
        # 返回一个字符串,指导如何格式化模型的输出
        pass

    def parse(self, model_output):
        # 解析模型的输出,转换为某种数据结构或格式
        pass

    def parse_with_prompt(self, model_output, prompt):
        # 基于原始提示解析模型的输出,转换为某种数据结构或格式
        pass

在 LangChain 中,通过实现 get_format_instructions、parseparse_with_prompt 这些方法,针对不同的使用场景和目标,设计了各种输出解析器。让我们来逐一认识一下。

  1. 列表解析器(List Parser):这个解析器用于处理模型生成的输出,当需要模型的输出是一个列表的时候使用。例如,如果你询问模型“列出所有鲜花的库存”,模型的回答应该是一个列表。
  2. 日期时间解析器(Datetime Parser):这个解析器用于处理日期和时间相关的输出,确保模型的输出是正确的日期或时间格式。
  3. 枚举解析器(Enum Parser):这个解析器用于处理预定义的一组值,当模型的输出应该是这组预定义值之一时使用。例如,如果你定义了一个问题的答案只能是“是”或“否”,那么枚举解析器可以确保模型的回答是这两个选项之一。
  4. 结构化输出解析器(Structured Output Parser):这个解析器用于处理复杂的、结构化的输出。如果你的应用需要模型生成具有特定结构的复杂回答(例如一份报告、一篇文章等),那么可以使用结构化输出解析器来实现。
  5. Pydantic(JSON)解析器:这个解析器用于处理模型的输出,当模型的输出应该是一个符合特定格式的 JSON 对象时使用。它使用 Pydantic 库,这是一个数据验证库,可以用于构建复杂的数据模型,并确保模型的输出符合预期的数据模型。
  6. 自动修复解析器(Auto-Fixing Parser):这个解析器可以自动修复某些常见的模型输出错误。例如,如果模型的输出应该是一段文本,但是模型返回了一段包含语法或拼写错误的文本,自动修复解析器可以自动纠正这些错误。
  7. 重试解析器(RetryWithErrorOutputParser):这个解析器用于在模型的初次输出不符合预期时,尝试修复或重新生成新的输出。例如,如果模型的输出应该是一个日期,但是模型返回了一个字符串,那么重试解析器可以重新提示模型生成正确的日期格式。

上面的各种解析器中,前三种很容易理解,而结构化输出解析器你已经用过了。所以接下来我们重点讲一讲 Pydantic(JSON)解析器、自动修复解析器和重试解析器。

Pydantic(JSON)解析器实战

Pydantic (JSON) 解析器应该是最常用也是最重要的解析器,我带着你用它来重构鲜花文案生成程序。

Pydantic 是一个 Python 数据验证和设置管理库,主要基于 Python 类型提示。尽管它不是专为 JSON 设计的,但由于 JSON 是现代 Web 应用和 API 交互中的常见数据格式,Pydantic 在处理和验证 JSON 数据时特别有用。
在这里插入图片描述

第一步:创建模型实例

先通过环境变量设置 OpenAI API 密钥,然后使用 LangChain 库创建了一个 OpenAI 的模型实例。这里我们仍然选择了 text-davinci-003 作为大语言模型。

# ------Part 1
# 设置OpenAI API密钥
import os
os.environ["OPENAI_API_KEY"] = '你的OpenAI API Key'

# 创建模型实例
from langchain import OpenAI
model = OpenAI(model_name='text-davinci-003')

第二步:定义输出数据的格式

先创建了一个空的 DataFrame,用于存储从模型生成的描述。接下来,通过一个名为 FlowerDescription 的 Pydantic BaseModel 类,定义了期望的数据格式(也就是数据的结构)。

# ------Part 2
# 创建一个空的DataFrame用于存储结果
import pandas as pd
df = pd.DataFrame(columns=["flower_type", "price", "description", "reason"])

# 数据准备
flowers = ["玫瑰", "百合", "康乃馨"]
prices = ["50", "30", "20"]

# 定义我们想要接收的数据格式
from pydantic import BaseModel, Field
class FlowerDescription(BaseModel):
    flower_type: str = Field(description="鲜花的种类")
    price: int = Field(description="鲜花的价格")
    description: str = Field(description="鲜花的描述文案")
    reason: str = Field(description="为什么要这样写这个文案")

在这里我们用到了负责数据格式验证的 Pydantic 库来创建带有类型注解的类 FlowerDescription,它可以自动验证输入数据,确保输入数据符合你指定的类型和其他验证条件。

Pydantic 有这样几个特点。

  1. 数据验证:当你向 Pydantic 类赋值时,它会自动进行数据验证。例如,如果你创建了一个字段需要是整数,但试图向它赋予一个字符串,Pydantic 会引发异常。
  2. 数据转换:Pydantic 不仅进行数据验证,还可以进行数据转换。例如,如果你有一个需要整数的字段,但你提供了一个可以转换为整数的字符串,如 “42”,Pydantic 会自动将这个字符串转换为整数 42。
  3. 易于使用:创建一个 Pydantic 类就像定义一个普通的 Python 类一样简单。只需要使用 Python 的类型注解功能,即可在类定义中指定每个字段的类型。
  4. JSON 支持:Pydantic 类可以很容易地从 JSON 数据创建,并可以将类的数据转换为 JSON 格式。下面,我们基于这个 Pydantic 数据格式类来创建 LangChain 的输出解析器。

第三步:创建输出解析器

在这一步中,我们创建输出解析器并获取输出格式指示。先使用 LangChain 库中的 PydanticOutputParser 创建了输出解析器,该解析器将用于解析模型的输出,以确保其符合 FlowerDescription 的格式。然后,使用解析器的 get_format_instructions 方法获取了输出格式的指示。

# ------Part 3
# 创建输出解析器
from langchain.output_parsers import PydanticOutputParser
output_parser = PydanticOutputParser(pydantic_object=FlowerDescription)

# 获取输出格式指示
format_instructions = output_parser.get_format_instructions()
# 打印提示
print("输出格式:",format_instructions)

程序输出如下:

输出格式: The output should be formatted as a JSON instance that conforms to the JSON schema below.

As an example, for the schema {"properties": {"foo": {"title": "Foo", "description": "a list of strings", "type": "array", "items": {"type": "string"}}}, "required": ["foo"]}}
the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted.

Here is the output schema:

{"properties": {"flower_type": {"title": "Flower Type", "description": "\u9c9c\u82b1\u7684\u79cd\u7c7b", "type": "string"}, "price": {"title": "Price", "description": "\u9c9c\u82b1\u7684\u4ef7\u683c", "type": "integer"}, "description": {"title": "Description", "description": "\u9c9c\u82b1\u7684\u63cf\u8ff0\u6587\u6848", "type": "string"}, "reason": {"title": "Reason", "description": "\u4e3a\u4ec0\u4e48\u8981\u8fd9\u6837\u5199\u8fd9\u4e2a\u6587\u6848", "type": "string"}}, "required": ["flower_type", "price", "description", "reason"]}

上面这个输出,这部分是通过output_parser.get_format_instructions()方法生成的,这是 Pydantic (JSON) 解析器的核心价值,值得你好好研究研究。同时它也算得上是一个很清晰的提示模板,能够为模型提供良好的指导,描述了模型输出应该符合的格式。(其中 description 中的中文被转成了 UTF-8 编码。)

它指示模型输出 JSON Schema 的形式,定义了一个有效的输出应该包含哪些字段,以及这些字段的数据类型。例如,它指定了 "flower_type" 字段应该是字符串类型,"price" 字段应该是整数类型。这个指示中还提供了一个例子,说明了什么是一个格式良好的输出。

下面,我们会把这个内容也传输到模型的提示中,让输入模型的提示和输出解析器的要求相互吻合,前后就呼应得上。

第四步:创建提示模板

# ------Part 4
# 创建提示模板
from langchain import PromptTemplate
prompt_template = """您是一位专业的鲜花店文案撰写员。
对于售价为 {price} 元的 {flower} ,您能提供一个吸引人的简短中文描述吗?
{format_instructions}"""

# 根据模板创建提示,同时在提示中加入输出解析器的说明
prompt = PromptTemplate.from_template(prompt_template, 
       partial_variables={"format_instructions": format_instructions}) 

# 打印提示
print("提示:", prompt)

输出:

提示: 
input_variables=['flower', 'price'] 

output_parser=None 

partial_variables={'format_instructions': 'The output should be formatted as a JSON instance that conforms to the JSON schema below.\n\n
As an example, for the schema {
"properties": {"foo": {"title": "Foo", "description": "a list of strings", "type": "array", "items": {"type": "string"}}}, 
"required": ["foo"]}}\n
the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. 
The object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted.\n\n
Here is the output schema:\n```\n
{"properties": {
"flower_type": {"title": "Flower Type", "description": "\\u9c9c\\u82b1\\u7684\\u79cd\\u7c7b", "type": "string"}, 
"price": {"title": "Price", "description": "\\u9c9c\\u82b1\\u7684\\u4ef7\\u683c", "type": "integer"}, 
"description": {"title": "Description", "description": "\\u9c9c\\u82b1\\u7684\\u63cf\\u8ff0\\u6587\\u6848", "type": "string"}, 
"reason": {"title": "Reason", "description": "\\u4e3a\\u4ec0\\u4e48\\u8981\\u8fd9\\u6837\\u5199\\u8fd9\\u4e2a\\u6587\\u6848", "type": "string"}}, 
"required": ["flower_type", "price", "description", "reason"]}\n```'} 

template='您是一位专业的鲜花店文案撰写员。
\n对于售价为 {price} 元的 {flower} ,您能提供一个吸引人的简短中文描述吗?\n
{format_instructions}' 

template_format='f-string' 

validate_template=True

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/317999.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

GPUMD分子动力学模拟-学习与实践

GPUMD分子动力学模拟-学习与实践 【20220813-樊哲勇 |基于GPUMD程序包的机器学习势和分子动力学模拟】 https://www.bilibili.com/video/BV1cd4y1Z7zi?share_sourcecopy_web 纯GPU下的MD分子模型系统软件 https://github.com/brucefan1983/GPUMD 跟GPUMD对接的一些python程…

调试(c语言)

前言: 我们在写程序的时候可能多多少少都会出现一些bug,使我们的程序不能正常运行,所以为了更快更好的找到并修复bug,使这些问题迎刃而解,学习好如何调试代码是每个学习编程的人所必备的技能。 1. 什么是bug&#xf…

Python教程(23)——Python类中常用的特殊成员

在Python中,类特殊成员是指以双下划线开头和结尾的属性和方法,也被称为魔术方法(Magic methods)或特殊方法(Special methods)。这些特殊成员在类的定义中具有特殊的语法和功能,用于实现对象的特…

行为型设计模式——迭代器模式

迭代器模式 迭代器模式也是非常的简单&#xff0c;定义如下&#xff1a; 提供一个对象来顺序访问聚合对象中的一系列数据&#xff0c;而不暴露聚合对象的内部表示。 相信大家都使用过类似下面的迭代器&#xff1a; List<String> list new ArrayList<>(); Iterat…

3d建模软件有哪些?3d云渲染推荐

3D建模软件有很多&#xff0c;有的非常复杂难以上手&#xff0c;那么适合新手的有哪些呢&#xff1f;一起来看看吧。 1、SketchUp SketchUp是一个用户友好且直观的建模软件&#xff0c;能与V-Ray渲染器一起使用&#xff0c;适合初学者。2、Blender Blender是一个功能强大且免费…

图片无损放大神器PhotoZoom8 Pro中文破解版

摘要 BenVista PhotoZoom中文版是一款采用专利技术的图片无损放大软件&#xff0c;被誉为放大神器。该软件以其卓越的效果而著称&#xff0c;特别是在无锯齿、不失真的完美放大图像质量方面表现出色。 软件介绍 BenVista PhotoZoom中文版是一款采用专利技术的图片无损放大软…

视频封面提取工具,批量提取视频封面

你是否曾为从大量的视频中提取封面而感到困扰&#xff1f;传统的做法是逐个打开视频&#xff0c;然后手动截图。这不仅费时费力&#xff0c;还容易出错。现在&#xff0c;有了我们【媒体梦工厂】&#xff0c;这些烦恼全部消失。不论视频数量多少&#xff0c;一键即可批量提取&a…

sentinel熔断与限流

文章目录 一、sentinel简介Sentinel 是什么&#xff1f;Sentinel安装 二、sentinel整合工程新建cloudalibaba-sentinel-service8401微服务引入依赖yml配置主启动类添加EnableDiscoveryClient业务类测试 三、sentinel流控规则基本介绍流控模式直接&#xff08;默认&#xff09;关…

掌握WPF控件:熟练常用属性(一)

WPF布局常用控件&#xff08;一&#xff09; Border Border控件是一个装饰控件&#xff0c;用于围绕其他元素绘制边框和背景。它提供了一种简单的方式来为其他控件添加边框和背景样式&#xff0c;而无需自定义控件的绘制逻辑。 常用属性描述Background用于设置背景颜色或图像…

当浏览器输入url的时候会发生什么?

说在前面 当我们在浏览器中输入URL并按下回车时&#xff0c;背后发生了一系列神秘的操作。本文将带您深入了解&#xff0c;从URL解析到页面渲染&#xff0c;揭秘浏览器输入URL的完整流程。 具体步骤 当浏览器输入URL时&#xff0c;一般经过以下细节步骤&#xff1a; 1、引言 …

通用外设-2.8‘TFT屏的使用

前言 一、验证连接是否正确 二、更改自己想用的图像 1.取模软件 Image2Lcd 2.9 的使用 2.使用 总结 前言 本文在中景园的代码上改写而来&#xff0c;主要记录下使用记录 一、验证连接是否正确 1.按内容说明进行线路连接 2.运行程序&#xff0c;因为内部有图片样本&…

Elasticsearch聚合优化 | 聚合速度提升5倍!

1、聚合为什么慢&#xff1f; 大多数时候对单个字段的聚合查询还是非常快的&#xff0c; 但是当需要同时聚合多个字段时&#xff0c;就可能会产生大量的分组&#xff0c;最终结果就是占用 Elasticsearch大量内存&#xff0c;从而导致 OOM 的情况发生。 实践应用发现&#xff0…

飞鱼CRM接入第三方系统 飞鱼API对接详细教程

场景描述 在白码低代码开发平台中&#xff0c;是支持外部crm系统的线索通过接口流入到白码系统里面&#xff0c;换而言之&#xff0c;只要外部的系统有线索api接口&#xff0c;白码系统可以接收线索并在白码系统上进行后续操作。本文以飞鱼crm系统为例&#xff0c;讲解如何接收…

LeetCode讲解篇之78. 子集

文章目录 题目描述题解思路题解代码 题目描述 题解思路 初始化一个start变量记录当前从哪里开始遍历搜索nums 搜索过程的数字组合加入结果集 然后从start下标开始遍历nums&#xff0c;更新start&#xff0c;递归搜索 直到搜索完毕&#xff0c;返回结果集 题解代码 class …

Open3D 获取点云坐标最值(17)

Open3D 获取点云坐标最值(17) 一、算法介绍二、算法实现1.代码2.结果人生天地间,忽如远行客 一、算法介绍 快速获取点云块,沿着 x y z 各方向的坐标最值,这些在点云处理中的应用范围是如此广泛,这也是点云最常被用到的关键信息,后续的很多算法都会设置到这一处理方法。…

学习selenium+python使用 XPath 表达式来实现找到目标元素时智能封装等待,执行测试代码启动Chrome浏览器后,地址栏只显示data;

背景 学习使用 XPath 表达式来实现找到目标元素时智能封装等待执行测试代码启动Chrome浏览器后&#xff0c;地址栏只显示data&#xff1b; 代码如下 import unittest from selenium import webdriver from selenium.common.exceptions import NoSuchElementException from …

关于Quartz远程调用服务方法失败如何解决,@Inner详细介绍

1.单独在要调用服务的controller写上相关方法&#xff08;Inner(value true)要走aop&#xff0c;会检测是否有内部调用标识&#xff09;具体见下述 2. 编写Feign远程调用的接口&#xff0c;注意加上RequestHeader(SecurityConstants.FROM) String from。因为inner(value true…

OpenCV 基于C++图像读取及存储API函数

OpenCV可以从存储介质中读入图像&#xff0c;也可以将摄像头(Camera)抓取的图像载入内存&#xff0c;然后进行处理。而存储图像就是将内存中的图像数据写入存储介质中&#xff0c;如写入硬盘、优盘等。 OpenCV要读入图像、操作图像。首先要用到Mat类&#xff0c;并且需创建Mat对…

飞桨分子动力学模拟-论文复现第六期:复现TorchMD

飞桨分子动力学模拟-论文复现第六期&#xff1a;复现TorchMD Paddle for MD 飞桨分子动力学模拟科学计算 复现论文-TorchMD: A deep learning framework for molecular simulations 本项目可在AIStudio一键运行&#xff1a;飞桨分子动力学模拟PaddleMD-复现TorchMD 【论文复…

【STM32】HAL库的RCC复位状态判断及NVIC系统软件复位

【STM32】HAL库的RCC复位状态判断及NVIC系统软件复位 在实际开发中 有时候会遇到复位状态不同 导致结果不同的情况 比如在上电复位时 电压不稳定 可能导致一些外部芯片无法正常工作 从而导致进行了错误的操作流程 所以 可以在程序运行后 加一个复位状态判断 用来检测是否正常复…