RAG代码实操之斗气强者萧炎

📑前言

本文主要是【RAG】——RAG代码实操的文章,如果有什么需要改进的地方还请大佬指出⛺️

🎬作者简介:大家好,我是听风与他🥇
☁️博客首页:CSDN主页听风与他
🌄每日一句:狠狠沉淀,顶峰相见

目录

    • 📑前言
    • 1.引言
    • 2.什么是RAG?
    • 3.LangChain实现RAG
      • 3.1基础环境准备
      • 3.2向量数据库
        • 1.「加载数据」
        • 2.「数据分块」
        • 3.「数据块存储」
    • 4.RAG实现
      • 1.「第一步:数据检索」
      • 2.「第二步:提示增强」
      • 3.「第三步:答案生成」
    • 📑文章末尾

1.引言

  • 针对大型语言模型效果不好的问题,之前人们主要关注大模型再训练、大模型微调、大模型的Prompt增强,但对于专有、快速更新的数据却并没有较好的解决方法,为此检索增强生成(RAG)的出现,弥合了LLM常识和专有数据之间的差距。

    今天给大家分享的这篇文章,将介绍RAG的概念理论,并带大家利用LangChain进行编排,OpenAI语言模型、Weaviate 矢量数据库(也可以自己搭建Milvus向量数据库)来实现简单的 RAG 管道。

2.什么是RAG?

  • RAG的全称是Retrieval-Augmented Generation,中文翻译为检索增强生成。它是一个为大模型提供外部知识源的概念,这使它们能够生成准确且符合上下文的答案,同时能够减少模型幻觉。

3.LangChain实现RAG

3.1基础环境准备

  • 1、安装所有需要依赖的相关python包,其中包括用于编排的langchain、大模型接口openai、矢量数据库的客户端 weaviate-client。
pip install langchain openai weaviate-client

3.2向量数据库

接下来,你需要准备一个矢量数据库作为保存所有附加信息的外部知识源。该矢量数据库是通过以下步骤填充的:1)加载数据;2)数据分块;3)数据[块存储]

1.「加载数据」
  • 这里选择了一篇斗破苍穹的小说,作为文档输入 。文档是txt文本,要加载文本这里使用 LangChain 的 TextLoader。
from langchain.document_loaders import TextLoader
loader = TextLoader('a.txt')
documents = loader.load()
2.「数据分块」
  • 因为文档在其原始状态下太长(将近5万行),无法放入大模型的上下文窗口,所以需要将其分成更小的部分。LangChain 内置了许多用于文本的分割器。这里使用 chunk_size 约为 1024 且 chunk_overlap 为128 的 CharacterTextSplitter 来保持块之间的文本连续性。
from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=1024, chunk_overlap=128)
chunks = text_splitter.split_documents(documents)

安装依赖

pip install tiktoken
3.「数据块存储」
  • 要启用跨文本块的语义搜索,需要为每个块生成向量嵌入,然后将它们与其嵌入存储在一起。要生成向量嵌入,可以使用 OpenAI 嵌入模型,并使用 Weaviate 向量数据库来进行存储。通过调用 .from_documents(),矢量数据库会自动填充块。
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Weaviate
import weaviate
from weaviate.embedded import EmbeddedOptions
import openai

client = weaviate.Client(
  embedded_options = EmbeddedOptions()
)

vectorstore = Weaviate.from_documents(
    client = client,
    documents = chunks,
    # embedding = OpenAIEmbeddings(),
    embedding = OpenAIEmbeddings(openai_api_key="openai的key",openai_api_base = "中转api"),
    by_text = False
)

4.RAG实现

1.「第一步:数据检索」

  • 将数据存入矢量数据库后,就可以将其定义为检索器组件,该组件根据用户查询和嵌入块之间的语义相似性获取相关上下文。
retriever = vectorstore.as_retriever()

2.「第二步:提示增强」

  • 完成数据检索之后,就可以使用相关上下文来增强提示。在这个过程中需要准备一个提示模板。可以通过提示模板轻松自定义提示,如下所示。
from langchain.prompts import ChatPromptTemplate
template = """你是一个问答机器人助手,请使用以下检索到的上下文来回答问题,如果你不知道答案,就说你不知道。问题是:{question},上下文: {context},答案是:
"""
prompt = ChatPromptTemplate.from_template(template)

3.「第三步:答案生成」

  • 利用 RAG 管道构建一条链,将检索器、提示模板和 LLM 链接在一起。定义了 RAG 链,就可以调用它了。
from langchain.chat_models import ChatOpenAI
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
llm = ChatOpenAI(model_name="gpt-3.5-turbo",openai_api_key="openai的key",openai_api_base = "中转api", temperature=0)

rag_chain = (
    {"context": retriever,  "question": RunnablePassthrough()} 
    | prompt 
    | llm
    | StrOutputParser() 
)

query = "萧薰儿是谁?"
res=rag_chain.invoke(query)
print(f'答案:{res}')

总的来说,RAG的生成过程如下图所示:

img

📑文章末尾

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/317914.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Linux运维】LVM和RAID学习及实践

LVM和RAID学习及实践 背景LVM简介新加硬盘的操作RAID-磁盘阵列应用场景RAID0RAID1其他结构RAID制作RAID 小结 背景 某台服务器的磁盘管理需要自己动手处理,找了一些资料也踩了一些坑,在这里记录一下,先介绍一下LVM和RAID这两个东西。在计算机…

【爬虫实战】-爬取微博之夜盛典评论,爬取了1.7w条数据

前言: TaoTao之前在前几期推文中发布了一个篇weibo评论的爬虫。主要就是采集评论区的数据,包括评论、评论者ip、评论id、评论者等一些信息。然后有很多的小伙伴对这个代码很感兴趣。TaoTao也都给代码开源了。由于比较匆忙,所以没来得及去讲这…

Open3D 从体素网格构建八叉树(14)

Open3D 从体素网格构建八叉树(14) 一、算法简介二、算法实现1.代码2.效果一、算法简介 上一章介绍从点云构建八叉树,对点云所在体素进行了可视化显示,这里可以对体素构建八叉树,可视化显示八叉树的具体划分结构。 二、算法实现 1.代码 代码如下(示例): import op…

【python】搭配Miniconda使用VSCode

现在的spyder总是运行出错,启动不了,尝试使用VSCode。 一、在VSCode中使用Miniconda管理的Python环境,可以按照以下步骤进行: a. 确保Miniconda环境已经安装并且正确配置。 b. 打开VSCode,安装Python扩展。 打开VS…

用通俗易懂的方式讲解:Stable Diffusion WebUI 从零基础到入门

本文主要介绍 Stable Diffusion WebUI 的实际操作方法,涵盖prompt推导、lora模型、vae模型和controlNet应用等内容,并给出了可操作的文生图、图生图实战示例。适合对Stable Diffusion感兴趣,但又对Stable Diffusion WebUI使用感到困惑的同学。…

GBASE南大通用提问:如果程序检索到 NULL 值,该怎么办?

可在数据库中存储 NULL 值,但编程语言支持的数据类型不识别 NULL 状态。程序必须 采用某种方式来识别 NULL 项,以免将它作为数据来处理。 在 SQL API 中,指示符变量满足此需要。指示符变量是与可能收到 NULL 项的主变量相 关联的一个附加的变…

深度学习笔记(五)——网络优化(1):学习率自调整、激活函数、损失函数、正则化

文中程序以Tensorflow-2.6.0为例 部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。 截图和程序部分引用自北京大学机器学习公开课 通过学习已经掌握了主要的基础函数之后具备了搭建一个网络并使其正常运行的能力,那下一步我们还…

Linux环境之Ubuntu安装Docker流程

今天分享Linux环境之Ubuntu安装docker流程,Docker 是目前非常流行的容器,对其基本掌握很有必要。下面我们通过阿里云镜像的方式安装: 本来今天准备用清华大学镜像安装呢,好像有点问题,于是改成阿里云安装了。清华安装…

《矩阵分析》笔记

来源:【《矩阵分析》期末速成 主讲人:苑长(5小时冲上90)】https://www.bilibili.com/video/BV1A24y1p76q?vd_sourcec4e1c57e5b6ca4824f87e74170ffa64d 这学期考矩阵论,使用教材是《矩阵论简明教程》,因为没…

Linux———ps命令详解

目录 ps 命令("process status" 的缩写。) 常用选项和参数: a:显示所有用户的进程,包括其他用户的进程。​ u:显示详细的进程信息,包括进程的所有者、CPU 使用率、内存使用量等。…

【LabVIEW FPGA入门】模拟输入和模拟输出

1.简单模拟输入和输出测试 1.打开项目,在FPGA终端下面新建一个VI 2.本示例以模拟输入卡和模拟输出卡同时举例。 3.新建一个VI编写程序,同时将卡1的输出连接到卡2的输入使用物理连线。 4.编译并运行程序,观察是否能从通道中采集和输出信号。 5…

【天龙八部】攻略day6

关键字: 灵武、寻宝要求、雁门 1】灵武选择 西凉枫林,锦带,短匕 白溪湖,明镜,双刺 竹海,玉钩,锁甲 2】楼兰寻宝需求 等级80级,40级前6本心法 3】雁门奖励 简单35*4元佑碎金 普…

PyCharm连接服务器 - 1

文章目录 利用PyCharm实现远程开发使用认证代理连接服务器 利用PyCharm实现远程开发 【注】该连接服务器的方法适用于代码在服务器,我们是通过 GateWay 打开远程服务器的代码进行操作。 该功能只有在PyCharm专业版下才可以使用,并且必须是官方的正版许…

不方便拉网线,房间又没Wifi信号?按照这个教程,让你家里每个角落都有网

前言 前段时间去了一个朋友家里,她老是和我叨叨说她家的卧室一点Wifi信号都没有。每次一躺床上都只能用手机流量上网。 家里明明有拉宽带,为什么在某一些地方还是得用自己手机流量?哎,有钱人的痛就是房子太大了。 我问她为啥不多…

LeetCode264. 丑数 II(相关话题:多重指针动态规划)

题目描述 给你一个整数 n ,请你找出并返回第 n 个 丑数 。丑数 就是质因子只包含 2、3 和 5 的正整数。 示例 1: 输入:n 10 输出:12 解释:[1, 2, 3, 4, 5, 6, 8, 9, 10, 12] 是由前 10 个丑数组成的序列。示例 2&am…

MySQL数据库入门到大牛_高级_00_MySQL高级特性篇的内容简介

文章目录 一、整个MySQL的思维导图二、MySQL高级特性篇大纲1. MySQL架构篇2. 索引及调优篇3. 事务篇4. 日志与备份篇 一、整个MySQL的思维导图 下图为整个MySQL内容,01-05是基础篇,06-09是高级篇 二、MySQL高级特性篇大纲 MySQL高级特性分为4个篇章&…

鸿蒙开发现在就业前景怎样?

随着科技的不断进步,鸿蒙系统逐渐崭露头角,成为智能设备领域的一颗新星。作为华为自主研发的操作系统,鸿蒙系统拥有着广阔的市场前景和就业机会。那么,鸿蒙开发的就业前景究竟怎样呢? 一、市场需求持续增长 随着鸿蒙…

【Docker】Linux中Docker镜像结构及自定义镜像,并且上传仓库可提供使用

目录 一、镜像结构 1. 基本结构 2. 常用命令 二、自定义镜像 1. 基本镜像 2. 进阶镜像 3. 完善镜像 三、镜像上传仓库 每篇一获 一、镜像结构 自定义 Docker 镜像有很多用途,以下是一些主要的应用场景: 一致性环境:通过自定义镜像&a…

如何实现接口重试

重试机制 在复杂的接口业务中,API请求数量很多,并且业务处理复杂,便难免会遇到一些网络问题(timeout)或者未知错误(error),这时候需要加入重试机制了。让我们来回顾一下都有什么实现机制吧。 8种重试机制实现 1. 循环重试 这是最…

Hive命令行运行SQL将数据保存到本地如何去除日志信息

1.场景分析 先有需求需要查询hive数仓数据并将结果保存到本地,但是在操作过程中总会有日志信息和表头信息一起保存到本地,不符合业务需要,那如何才能解决该问题呢? 废话不多少,直接上代码介绍: 2.问题解决…