【LangChain学习之旅】—(7) 调用模型:使用OpenAI API还是微调开源Llama2/ChatGLM?

【LangChain学习之旅】—(7) 调用模型:使用OpenAI API还是微调开源Llama2/ChatGLM?

  • 大语言模型发展史
  • 预训练 + 微调的模式
  • 用 HuggingFace 跑开源模型
  • 申请使用 Meta 的 Llama2 模型
  • 通过 HuggingFace 调用 Llama
  • LangChain 和 HuggingFace 的接口
    • 通过 HuggingFace Hub

Reference:LangChain 实战课

之前的内容讲了提示工程的原理以及 LangChain 中的具体使用方式。今天,我们来着重讨论 Model I/O 中的第二个子模块,LLM。

让我们带着下面的问题来开始这一节课的学习。大语言模型,不止 ChatGPT 一种。调用 OpenAI 的 API,当然方便且高效,不过,如果我就是想用其他的模型(比如说开源的 Llama2 或者 ChatGLM),该怎么做?再进一步,如果我就是想在本机上从头训练出来一个新模型,然后在 LangChain 中使用自己的模型,又该怎么做?

关于大模型的微调(或称精调)、预训练、重新训练、乃至从头训练,这是一个相当大的话题,不仅仅需要足够的知识和经验,还需要大量的语料数据、GPU 硬件和强大的工程能力。别说一节课了,我想两三个专栏也不一定能讲全讲透。不过,我可以提纲挈领地把大模型的训练流程和使用方法给你缕一缕。这样你就能体验到,在 LangChain 中使用自己微调的模型是完全没问题的。

大语言模型发展史

说到语言模型,我们不妨先从其发展史中去了解一些关键信息。

Google 2018 年的论文名篇 Attention is all you need,提出了 Transformer 架构,也给这一次 AI 的腾飞点了火。Transformer 是几乎所有预训练模型的核心底层架构。基于 Transformer 预训练所得的大规模语言模型也被叫做“基础模型”(Foundation Model 或 Base Model)。

在这个过程中,模型学习了词汇、语法、句子结构以及上下文信息等丰富的语言知识。这种在大量数据上学到的知识,为后续的下游任务(如情感分析、文本分类、命名实体识别、问答系统等)提供了一个通用的、丰富的语言表示基础,为解决许多复杂的 NLP 问题提供了可能。

在预训练模型出现的早期,BERT 毫无疑问是最具代表性的,也是影响力最大的模型。BERT 通过同时学习文本的前向和后向上下文信息,实现对句子结构的深入理解。BERT 之后,各种大型预训练模型如雨后春笋般地涌现,自然语言处理(NLP)领域进入了一个新时代。这些模型推动了 NLP 技术的快速发展,解决了许多以前难以应对的问题,比如翻译、文本总结、聊天对话等等,提供了强大的工具。

在这里插入图片描述
当然,现今的预训练模型的趋势是参数越来越多,模型也越来越大,训练一次的费用可达几百万美元。这样大的开销和资源的耗费,只有世界顶级大厂才能够负担得起,普通的学术组织和高等院校很难在这个领域继续引领科技突破,这种现象开始被普通研究人员所诟病。
在这里插入图片描述

预训练 + 微调的模式

不过,话虽如此,大型预训练模型的确是工程师的福音。因为,经过预训练的大模型中所习得的语义信息和所蕴含的语言知识,能够非常容易地向下游任务迁移。NLP 应用人员可以对模型的头部或者部分参数根据自己的需要进行适应性的调整,这通常涉及在相对较小的有标注数据集上进行有监督学习,让模型适应特定任务的需求。

这就是对预训练模型的微调(Fine-tuning)。微调过程相比于从头训练一个模型要快得多,且需要的数据量也要少得多,这使得作为工程师的我们能够更高效地开发和部署各种 NLP 解决方案。

在这里插入图片描述
图中的“具体任务”,其实也可以更换为“具体领域”。那么总结来说:

  • 预训练:在大规模无标注文本数据上进行模型的训练,目标是让模型学习自然语言的基础表达、上下文信息和语义知识,为后续任务提供一个通用的、丰富的语言表示基础。
  • 微调:在预训练模型的基础上,可以根据特定的下游任务对模型进行微调。现在你经常会听到各行各业的人说:我们的优势就是领域知识嘛!我们比不过国内外大模型,我们可以拿开源模型做垂直领域嘛!做垂类模型!—— 啥叫垂类?指的其实就是根据领域数据微调开源模型这件事儿。

这种预训练 + 微调的大模型应用模式优势明显。首先,预训练模型能够将大量的通用语言知识迁移到各种下游任务上,作为应用人员,我们不需要自己寻找语料库,从头开始训练大模型,这减少了训练时间和数据需求;其次,微调过程可以快速地根据特定任务进行优化,简化了模型部署的难度;最后,预训练 + 微调的架构具有很强的可扩展性,可以方便地应用于各种自然语言处理任务,大大提高了 NLP 技术在实际应用中的可用性和普及程度,给我们带来了巨大的便利。

用 HuggingFace 跑开源模型

  1. 第一步,登录 HuggingFace 网站,并拿到专属于你的 Token。
    在这里插入图片描述

  2. 第二步,用pip install transformers安装 HuggingFace Library。详见这里。

  3. 第三步,在命令行中运行 huggingface-cli login,设置你的 API Token。
    在这里插入图片描述

当然,也可以在程序中设置你的 API Token,但是这不如在命令行中设置来得安全。

# 导入HuggingFace API Token
import os
os.environ['HUGGINGFACEHUB_API_TOKEN'] = '你的HuggingFace API Token'

申请使用 Meta 的 Llama2 模型

在 HuggingFace 的 Model 中,找到 meta-llama/Llama-2-7b。注意,各种各样版本的 Llama2 模型多如牛毛,我们这里用的是最小的 7B 版。此外,还有 13b\70b\chat 版以及各种各样的非 Meta 官方版。
在这里插入图片描述

通过 HuggingFace 调用 Llama

好,万事俱备,现在我们可以使用 HuggingFace 的 Transformers 库来调用 Llama 啦!

# 导入必要的库
from transformers import AutoTokenizer, AutoModelForCausalLM

# 加载预训练模型的分词器
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")

# 加载预训练的模型
# 使用 device_map 参数将模型自动加载到可用的硬件设备上,例如GPU
model = AutoModelForCausalLM.from_pretrained(
          "meta-llama/Llama-2-7b-chat-hf", 
          device_map = 'auto')  

# 定义一个提示,希望模型基于此提示生成故事
prompt = "请给我讲个玫瑰的爱情故事?"

# 使用分词器将提示转化为模型可以理解的格式,并将其移动到GPU上
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")

# 使用模型生成文本,设置最大生成令牌数为2000
outputs = model.generate(inputs["input_ids"], max_new_tokens=2000)

# 将生成的令牌解码成文本,并跳过任何特殊的令牌,例如[CLS], [SEP]等
response = tokenizer.decode(outputs[0], skip_special_tokens=True)

# 打印生成的响应
print(response)

这段程序是一个很典型的 HuggingFace 的 Transformers 库的用例,该库提供了大量预训练的模型和相关的工具。

  • 导入 AutoTokenizer:这是一个用于自动加载预训练模型的相关分词器的工具。分词器负责将文本转化为模型可以理解的数字格式。
  • 导入 AutoModelForCausalLM:这是用于加载因果语言模型(用于文本生成)的工具。
  • 使用 from_pretrained 方法来加载预训练的分词器和模型。其中,device_map = 'auto' 是为了自动地将模型加载到可用的设备上,例如 GPU。
  • 然后,给定一个提示(prompt):"请给我讲个玫瑰的爱情故事?",并使用分词器将该提示转换为模型可以接受的格式,return_tensors="pt" 表示返回 PyTorch 张量。语句中的 .to("cuda") 是 GPU 设备格式转换,因为我在 GPU 上跑程序,不用这个的话会报错,如果你使用 CPU,可以试一下删掉它。
  • 最后使用模型的.generate()方法生成响应。max_new_tokens=2000 限制生成的文本的长度。使用分词器的.decode()方法将输出的数字转化回文本,并且跳过任何特殊的标记。

LangChain 和 HuggingFace 的接口

如何把 HuggingFace 里面的模型接入 LangChain。

通过 HuggingFace Hub

第一种集成方式,是通过 HuggingFace Hub。HuggingFace Hub 是一个开源模型中心化存储库,主要用于分享、协作和存储预训练模型、数据集以及相关组件。

我们给出一个 HuggingFace Hub 和 LangChain 集成的代码示例。

# 导入HuggingFace API Token
import os
os.environ['HUGGINGFACEHUB_API_TOKEN'] = '你的HuggingFace API Token'

# 导入必要的库
from langchain import PromptTemplate, HuggingFaceHub, LLMChain

# 初始化HF LLM
llm = HuggingFaceHub(
    repo_id="google/flan-t5-small",
    #repo_id="meta-llama/Llama-2-7b-chat-hf",
)

# 创建简单的question-answering提示模板
template = """Question: {question}
              Answer: """

# 创建Prompt          
prompt = PromptTemplate(template=template, input_variables=["question"])

# 调用LLM Chain --- 我们以后会详细讲LLM Chain
llm_chain = LLMChain(
    prompt=prompt,
    llm=llm
)

# 准备问题
question = "Rose is which type of flower?"

# 调用模型并返回结果
print(llm_chain.run(question))

可以看出,这个集成过程非常简单,只需要在 HuggingFaceHub 类的 repo_id 中指定模型名称,就可以直接下载并使用模型,模型会自动下载到 HuggingFace 的 Cache 目录,并不需要手工下载。

初始化 LLM,创建提示模板,生成提示的过程,你已经很熟悉了。这段代码中有一个新内容是我通过 llm_chain 来调用了 LLM。这段代码也不难理解,有关 Chain 的概念我们以后还会详述。

不过,我尝试使用 meta-llama/Llama-2-7b-chat-hf 这个模型时,出现了错误,因此我只好用比较旧的模型做测试。我随便选择了 google/flan-t5-small,问了它一个很简单的问题,想看看它是否知道玫瑰是哪一种花。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/317091.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

PHP代码审计基础知识

前言 本文章主要是PHP代码审计的一些基础知识,包括函数的用法,漏洞点,偏向基础部分,个人能力有限,部分可能会出现错误或者遗漏,读者可自行补充。 代码执行 代码执行是代码审计当中较为严重的漏洞&…

关于LwRB环形缓冲区开源库的纯C++版本支持原子操作

1、LwRB环形缓冲区开源库: GitHub - MaJerle/lwrb: Lightweight generic ring buffer manager libraryLightweight generic ring buffer manager library. Contribute to MaJerle/lwrb development by creating an account on GitHub.https://github.com/MaJerle/l…

【Linux】Linux基础之权限

目录 一、Linux中的用户1.1 用户之间的身份切换1.2 指令提权 二、权限管理2.1 文件权限2.2 权限操作2.3 chown和chgrp 三、文件类型四、目录文件的权限操作五、权限掩码六、粘滞位 一、Linux中的用户 Linux中主要有两种用户: root,超级用户非root&…

AI智能创作软件,颠覆你的写作体验

你是否想过,有一天,文字创作不再受限于人的思维和表达能力?AI智能文章创作就是这样一个神奇的存在。它运用先进的自然语言处理技术,通过对大量数据的深度学习,根据需要自动生成文章。你只需输入关键词或主题&#xff0…

Vue3-完成任意组件之间的传值

一、props(只限于父子之间,不嫌麻烦可以不断传) 父给子传值,子接收defineProps 父给子传事件,子接收defineProps,并触发事件的时候传值,然后父通过事件的回调函数拿到子传的值 二、mitt&#…

R语言将list转变为dataframe(常用)

在R语言使用中常常遇到list文件需要转变为dataframe格式文件处理。这是需要写循环来进行转换。IOBR查看其收录的相关基因集(自备)_iobr_deg-CSDN博客 示例文件 list文件&#xff1a; 循环转换为dataframe data <- signature_tme dat <- as.data.frame(t(sapply(data, …

【AI的未来 - AI Agent系列】【MetaGPT】0. 你的第一个MetaGPT程序

《MetaGPT智能体开发入门》开课&#xff0c;跟着课程&#xff0c;学习MetaGPT智能体开发。 0. 安装MetaGPT 请确保你的系统已安装Python 3.9。你可以通过以下命令进行检查&#xff1a; python3 --version下面是具体的安装命令&#xff1a; 安装命令 pip install metagpt如…

完美解决报错Please verify that the package.json has a valid “main“ entry处理方法

出现下图中的错误 &#xff0c;说明缺少main入口 解决方法&#xff1a; 1.删除 node_modules 和 package-lock.json这两个文件 2.命令行输入npm i 会重新下载包 3.重新执行检查没有报错

Centos安装RocketMQ之双主双从模式(同步双写方式)

目录 前言 一、总体架构 二、环境准备 1、文件准备 2、服务器换环境 3、防火墙配置 4、创建消息存储路径 三、配置文件修改 1、master1配置修改 2、slave2配置修改 3、master2配置修改 4、slave1配置修改 四、启动脚本修改 五、启动服务 1、启动NameServe集群 ​编…

阿里云高性能云服务器_云主机_云服务器详解

阿里云高性能云服务器60%单实例最大性能提升&#xff0c;35Gbps内网带宽&#xff0c;网络增强&通用型云服务器、本地SSD型云服务器、大数据型云服务器、GPU异构型云服务器&#xff0c;阿里云百科aliyunbaike.com分享阿里云高性能云服务器&#xff1a; 阿里云高性能云服务器…

【simple-admin】FMS模块如何快速接入阿里云oss 腾讯云cos 服务 实现快速上传文件功能落地

让我们一起支持群主维护simple-admin 社群吧!!! 不能加入星球的朋友记得来点个Star!! https://github.com/suyuan32/simple-admin-core 一、前提准备 1、goctls版本 goctls官方git:https://github.com/suyuan32/goctls 确保 goctls是最新版本 v1.6.19 goctls -v goct…

(十一)IIC总线-AT24C02-EEPROM

文章目录 IIC总线篇AT24C02-EEPROM篇主要特性引脚说明AT24Cxx用几位数据地址随机寻址的(存储器组织)AT24C02设备操作AT24CXX设备寻址EEPROM写操作的种类EEPROM读操作的种类实现单字节写实现任意读读写应用 IIC总线篇 前面介绍过了&#xff0c;请参考 (十)IIC总线-PCF8591-ADC/…

手把手教你用 Stable Diffusion 写好提示词

Stable Diffusion 技术把 AI 图像生成提高到了一个全新高度&#xff0c;文生图 Text to image 生成质量很大程度上取决于你的提示词 Prompt 好不好。 前面文章写了一篇文章&#xff1a;一份保姆级的 Stable Diffusion 部署教程&#xff0c;开启你的炼丹之路 本文从“如何写好…

前端基础知识

一、脚本script 定义&#xff1a;脚本简单地说就是一条条的文字命令&#xff0c;这些文字命令是可以看到的&#xff0c;脚本程序在执行时&#xff0c;是由系统的一个解释器&#xff0c;将其一条条的翻译成机器可识别的指令&#xff0c;并按程序顺序执行 作用&#xff1a;可以…

element:日历 / 使用记录

一、预期效果 Element - The worlds most popular Vue UI framework element默认样式 目标样式 二、Calendar 属性 参数说明类型可选值默认值value / v-model绑定值Date/string/number——range时间范围&#xff0c;包括开始时间与结束时间。开始时间必须是周一&#xff0c;…

【HuggingFace Transformer库学习笔记】基础组件学习:Evaluate

基础组件学习——Evaluate Evaluate使用指南 查看支持的评估函数 # include_community&#xff1a;是否添加社区实现的部分 # with_details&#xff1a;是否展示更多细节 evaluate.list_evaluation_modules(include_communityFalse, with_detailsTrue)加载评估函数 accuracy…

Linux终端常见用法总结

熟悉Linux终端的基础用法和常见技巧可以极大提高运维及开发人员的工作效率&#xff0c;笔者结合自身学习实践&#xff0c;总结以下终端用法供同行交流学习。 常 见 用 法 &#x1f3af; 1&#xff1a;快捷键 1.1 Alt . 在光标位置插入上一次执行命令的最后一个参数。 1.2 Ct…

图片特效/增强GUI程序

程序下载地址&#xff1a;mendianyu/pictureConvert: 图片特效/增强GUI程序&#xff0c;借助百度接口实现人像动漫化&#xff0c;模糊图片变清晰等等功能 (github.com) 图片特效/增强GUI程序 借助百度接口实现人像动漫化&#xff0c;模糊图片变清晰等等功能 程序介绍 运行Ima…

码牛课堂首推——鸿蒙南北双向开发学习路线图标准版~

鸿蒙&#xff01;鸿蒙&#xff01;鸿蒙&#xff01; 要说2023-2024年IT圈最火爆的名词&#xff0c;一定是鸿蒙&#xff01; 2023年9月25日&#xff0c;华为发布会正式宣布2024年第一季度将推出HarmonyOS NEXT版本&#xff0c;这意味着鸿蒙原生应用开发将彻底摆脱Android手机系…

redis夯实之路-集群详解

Redis有单机模式和集群模式。 集群是 Redis 提供的分布式数据库方案&#xff0c;集群通过分片( sharding )来实现数据共享&#xff0c;并提供复制和故障转移。集群模式可以有多个 master 。使用集群模式可以进一步提升 Redis 性能&#xff0c;分布式部署实现高可用性&#xff…