C1-3.2 关于‘神经网络’

C1-3.2 关于‘神经网络’

【注释】

彩色图像(RGB)由三原色构成,二维图像在任意一个点像素为立体三层结构,分别是红色、绿色、蓝色值,该值的范围在0∽255之间

1、全连接神经网络——整体架构

【注释】:

​ 这张图懂了的话,神经网络就懂了80%。

在这里插入图片描述

1、层次结构

分为:

  • 输入层
  • 隐藏层
  • 输出层

ps:要注意的是,中间的隐藏层可以由多层组成。

展示一下过程吧;

输入层输入数据 (输入层数据* W1)> hidden layer1 (hidden layer1层数据 * W2)>hidden layer2 (hidden layer2 层数据 * W3 )>输出层

PS:W1 W2 W3 可以是一个数,也可以是n * m的矩阵

1.1 、层次结构—神经元 (输入层)

就是 输入层(input layer)小红框中那几个小汤圆(A、B、C),代表三个输入的特征的个数

​ 这三个大汤圆:A,B,C 分别代表三个特征值(比如:身高、体重、年龄)

在这里插入图片描述

​ 我们可以看到图中每个层次中都有许多圆圆的球似的东西,这个东西就是在神经网络中的神经元,每一种层次中的神经元中的含量不太一样。

​ 在输入层中每一个神经元里面是你输入原始数据(一般称为X)的不同特征,比如x为一张图片,这张图片的像素是32 * 32 * 3 = 3072,其中的每一个像素都是它的特征,所以有3072个特征对应的输入层神经元个数就是3072个,这些特征以矩阵的形式进行输入的。我们举个例子比如我们的输入矩阵为‘1*3072’(第一维的数字表示一个batch(batch指的是每次训练输入多少个数据)中有多少个输入;第二维数字中的就是每一个输入有多少特征。)

1.2、层次结构—隐藏层

  • **隐藏层的含义来源:**不像输入层(在监督学习的训练集中,我们知道输入的数据X-> ;w -> ;b)、输出层(在监督学习的训练集中,知道输出结果)。隐藏层:在训练集中我们是看不到他的值的。

  • 在 “隐藏层” 和 “输出层”中,可以把每一个神经元当做一个激活函数,激活函数可以是Sigmoid ;RueL等等…

  • 以 一个神经元结构为例:

    • 其中L是最后一步计算损失函数,然后进行梯度下降进行后反馈,不断优化w 和b 的值,得到最小的损失函数值。

在这里插入图片描述

在这里插入图片描述

  • 多层隐藏层的情况:

    【注释】:其中a[0]表示输入层输入的值(可以是向量)

    • 第一层隐藏层相应参数和结果:a[1] ;w[1]; b[1]
      • 第一层神经元各个结果:a[1]1,a[1]2,a[1]3
    • 第二层隐藏层相应参数和结果:a[2] w[2] b[2]

    用这种可以明确表示出这些值来自那一层。。。

在这里插入图片描述

在这里插入图片描述

1.3、层次结构—输出层

输出层 可以是一个神经元/多个神经元

在这里插入图片描述

以一个神经元为例:

  • 第一步:接受前一层隐藏层的输出(这里是a[1]),作为输出层的输入
  • 第二步:放入输出层的神经元进行计算。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/315985.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

科技顶天,市场立地 。璞华科技“顶天立地”的成长之路

科技顶天,市场立地。 几十年来,我们越来越深刻地认识到,这就是真理,质朴而深刻。尤其在当前特殊的国际国内商业环境中,这一理念不但没有过时,反而恰逢其时。有这么一家企业,一直践行“科技顶天…

分类预测 | Matlab实现RP-LSTM-Attention递归图优化长短期记忆神经网络注意力机制的数据分类预测【24年新算法】

分类预测 | Matlab实现RP-LSTM-Attention递归图优化长短期记忆神经网络注意力机制的数据分类预测【24年新算法】 目录 分类预测 | Matlab实现RP-LSTM-Attention递归图优化长短期记忆神经网络注意力机制的数据分类预测【24年新算法】分类效果基本描述模型描述程序设计参考资料 分…

2023极客大挑战web小记

拿到题目提示post传参还以为是道签到题 刚开始直接把自己极客大挑战的username以及password怼上去,但是不对。看看F12,有提示。 当一个搜索蜘蛛访问一个站点时,它会首先检查该站点根目录下是否存在robots.txt,如果存在&#xff0c…

近视的孩子用什么灯?学生考研护眼台灯推荐

随着时代快速发展,2022年我国近视人数达到了7亿,呈现低龄化趋势,儿童及青少年人数占了53.8%。现在学业负担都很重,每个家长都不希望自己的孩子近视或加深近视了,都会想尽一切办法保护视力。而护眼台灯就成了家长购买台…

智能路由器中的 dns.he.net可使用自定义域名的免费 DDNS 服务配置方法

今天介绍的这个是可以使用自定义域名同时支持使用二级域名的免费DDNS服务 dns.he.net的动态DDNS服务的配置方法, 这个服务相对还是比较稳定的, 其配置也和其他的DDNS服务有些不太一样, 首先他的主机名: 这里需要设置为登录后分配的区域域名: ipv6.he.net 然后就是 DDNS 用户…

Git新手?这篇文章带你飞!基础操作一网打尽!

推荐阅读 智能化校园:深入探讨云端管理系统设计与实现(一) 智能化校园:深入探讨云端管理系统设计与实现(二) 文章目录 推荐阅读Git初识Git啥是版本控制系统??集中式VS分布式 git使用…

录屏怎么打开?看这里,录制视频不费事!

随着科技的快速发展,录屏已经成为人们日常生活中经常使用的功能。无论是录制游戏视频、教程讲解,还是录制在线会议,录屏软件都发挥着重要作用。然而,很多用户并不知道录屏怎么打开,以及如何使用它们。本文将介绍两种常…

【书生·浦语】大模型实战营——第四课作业

教程文档:https://github.com/InternLM/tutorial/blob/main/xtuner/self.md 基础作业需要构建数据集,微调模型,让其明白自己的弟位(OvO!) 微调环境准备 进入开发机后,先bash,再创…

uniapp微信小程序投票系统实战 (SpringBoot2+vue3.2+element plus ) -投票帖子明细实现

锋哥原创的uniapp微信小程序投票系统实战: uniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )_哔哩哔哩_bilibiliuniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )共计21条视频…

应急管理蓝皮书 |《应急预案数字化建设现状和发展建议》下篇

导读 《应急预案数字化建设现状和发展建议》:297-313页 《中国应急管理发展报告》系列蓝皮书由中央党校(国家行政学院)应急管理培训中心(中欧应急管理学院)联合社会科学文献出版社研创出版,本着“权威前沿…

RT-Thread I/O设备模型

I/O设备模型 绝大部分的嵌入式系统都包括一些I/O(Input/Output,输入/输出)设备,例如仪器上的数据显示屏、工业设备上的串口通信、数据采集设备上用于保存数据的Flash或SD卡,以及网络设备的以太网接口等,都…

Linux 内核学习 3a - 如何查看虚拟内存和物理内存,以及虚拟内存和物理内存之间转换

/proc/iomem, ioremap(), mmap() The kernel manages device resources like registers as physical addresses(物理地址). These are the addresses in /proc/iomem. The physical address is not directly useful to a driver; it must use ioremap() to map the space and …

linux安装MySQL5.7(安装、开机自启、定时备份)

一、安装步骤 我喜欢安装在/usr/local/mysql目录下 #切换目录 cd /usr/local/ #下载文件 wget https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-5.7.38-linux-glibc2.12-x86_64.tar.gz #解压文件 tar -zxvf mysql-5.7.38-linux-glibc2.12-x86_64.tar.gz -C /usr/local …

【电路电子学】7天速通攻略+笔记

7天是 看视频记笔记刷题的总时长,时间紧迫的同学可以看情况进行缩减。个人认为做题,尤其是解析齐全的题最重要! 我校所用教材 《电路与电子学基础》唐胜安 复习总流程 所用材料(都可自行找到免费资源) 视频知识点讲…

机器人持续学习基准LIBERO系列5——获取显示深度图

0.前置 机器人持续学习基准LIBERO系列1——基本介绍与安装测试机器人持续学习基准LIBERO系列2——路径与基准基本信息机器人持续学习基准LIBERO系列3——相机画面可视化及单步移动更新机器人持续学习基准LIBERO系列4——robosuite最基本demo 1.更改环境设置 LIBERO-master/l…

【降龙算法】基于QT插件机制实现一个机器视觉算法小框架

机器视觉行业有各种各样的拖拉拽框架,也叫做低代码平台,例如国内海康的VisionMaster: 一个机器视觉框架需要包含各种算法模块,日志窗口,图像显示窗口等等,【降龙算法】就是做了一个入门级的机器视觉算法框…

Java入门IDEA基础语法

1:Java入门 1.1 Java简介 Java是什么: Java是一门非常优秀的计算机语言 语言:人与人交流沟通的表达方式 计算机语言:人与计算机之间进行信息交流沟通的一种特殊语言 Java之父:詹姆斯高斯林(James Gosli…

如何利用RPA做UI自动化测试对传统自动化的降维打击

写在前面 RPA软件一开始的目的并不是自动化测试,而是要把电脑上面几十个、上百个常用的软件,通过机器人流程自动化来打通,通过一个软件来控制几十个、上百个软件。而这个过程,其实覆盖了软件自动化测试。 所谓降维打击&#xff0c…

伴鱼离线数仓建设案例

伴鱼数仓建设案例 伴鱼离线数仓建立,与伴鱼的业务一起快速发展,从一条业务线,到多条业务线。在演进的过程中,有很多总结和沉淀的内容。本篇文章主要介绍伴鱼离线数据仓库的发展历史,在发展过程中遇到的各种问题&#…

pytorch学习笔记(十)

一、损失函数 举个例子 比如说根据Loss提供的信息知道,解答题太弱了,需要多训练训练这个模块。 Loss作用:1.算实际输出和目标之间的差距 2.为我们更新输出提供一定的依据(反向传播) 看官方文档 每个输入输出相减取…