MATLAB - 四旋翼飞行器动力学方程

系列文章目录


前言

本例演示了如何使用 Symbolic Math Toolbox™(符号数学工具箱)推导四旋翼飞行器的连续时间非线性模型。具体来说,本例讨论了 getQuadrotorDynamicsAndJacobian 脚本,该脚本可生成四旋翼状态函数及其雅各布函数。这些函数将在使用非线性模型预测控制(模型预测控制工具箱)控制四旋翼飞行器的示例中使用。

四旋翼飞行器又称四旋翼直升机,是一种拥有四个旋翼的直升机。从四旋翼飞行器的质量中心出发,旋翼呈等距离的正方形排列。四旋翼的运动是通过调整四个旋翼的角速度来控制的,而四个旋翼是由电动马达带动旋转的。四旋翼飞行器动力学数学模型可从牛顿-欧拉方程和欧拉-拉格朗日方程中导出 [1]。


一、定义状态变量和参数

如图所示,四旋翼飞行器有六个自由度(三个线性坐标和三个角度坐标),四个控制输入。

四旋翼飞行器的 12 个状态是

\left(x,y,z,\phi\,,\theta,\psi,\dot{x},\dot{y},\dot{\ z},\dot{\phi},\dot{\theta},\dot{\psi}\right)^{T},

其中

\xi=(x,y,z)^{\mathrm{T}} 表示线性位置。

\eta=\left(\phi\,,\theta,\psi\right)^{\mathrm{T}} 分别表示滚转角、俯仰角和偏航角。

\left(\dot{x},\dot{y},\dot{z},\dot{\phi},\dot{\theta},\dot{\psi}\right)^{T} 表示线速度和角速度,或线性位置和角度位置的时间导数。

四旋翼飞行器的运动参数为

(u_1,u_2,u_3,u_4)=\left(\omega_{1}^{2},\omega_{2}^{2},\omega_{3}^{2},\omega_{4}^{2}\right) 代表四个旋翼的角速度平方。

(I_{​{xx}},I_{​{yy}},I_{​{zz}}) 代表机身坐标系中转动惯量矩阵的对角元素。

(k,l,m,b,g)代表升力常数、转子与质量中心的距离、四旋翼质量、阻力常数和重力。

前四个参数 (u_1,u_2,u_3,u_4) 是控制输入或控制四旋翼飞行器轨迹的操纵变量。其余参数固定为给定值。

二、定义变换矩阵和科里奥利矩阵

定义惯性坐标系和主体坐标系之间的变换矩阵。需要这些变换矩阵来描述四旋翼飞行器在两个坐标系中的运动。四旋翼飞行器的 12 个状态在惯性系中定义,旋转惯性矩阵在机身系中定义。

创建符号函数来表示随时间变化的角度。在按照 [1] 进行的数学推导中,需要这种明确的时间依赖性来评估时间导数。定义矩阵 Wη 以将角速度从惯性系转换到体坐标系。定义旋转矩阵 R,使用局部函数部分定义的 rotationMatrixEulerZYX 函数将线性力从机身坐标系转换到惯性坐标系。创建符号矩阵来表示这些变换矩阵。

% Create symbolic functions for time-dependent angles
% phi: roll angle
% theta: pitch angle
% psi: yaw angle
syms phi(t) theta(t) psi(t)

% Transformation matrix for angular velocities from inertial frame
% to body frame
W = [ 1,  0,        -sin(theta);
      0,  cos(phi),  cos(theta)*sin(phi);
      0, -sin(phi),  cos(theta)*cos(phi) ];

% Rotation matrix R_ZYX from body frame to inertial frame
R = rotationMatrixEulerZYX(phi,theta,psi);

 求用于表示惯性系中旋转能量的雅各布矩阵 J=W_{\eta}^{T}\,I\,W_{\eta}

% Create symbolic variables for diagonal elements of inertia matrix
syms Ixx Iyy Izz

% Jacobian that relates body frame to inertial frame velocities
I = [Ixx, 0, 0; 0, Iyy, 0; 0, 0, Izz];
J = W.'*I*W;

接下来,找出科里奥利矩阵 C(\eta,\dot{\eta})=\frac{\mathrm{d}}{\mathrm{d}t}J-\frac{1}{2}\frac{\partial}{\partial\eta}\left(\dot{\eta}^{\Upsilon}J\right),它包含角欧拉-拉格朗日方程中的陀螺项和向心项。使用符号 diff 和 jacobian 函数进行微分运算。为了简化微分后科里奥利矩阵的符号,可以用 C(\eta,{\dot{\eta}})中的显式时间相关项替换为符号变量(代表特定时间的某些值)。这种简化的符号使这里的结果更容易与 [1] 中的推导进行比较。 

% Coriolis matrix
dJ_dt = diff(J);
h_dot_J = [diff(phi,t), diff(theta,t), diff(psi,t)]*J;
grad_temp_h = transpose(jacobian(h_dot_J,[phi theta psi]));
C = dJ_dt - 1/2*grad_temp_h;
C = subsStateVars(C,t);

三、证明科里奥利矩阵定义是一致的

科里奥利矩阵 C(\eta,{\dot{\eta}}) 很容易用上一节的符号工作流程推导出来。然而,这里的 C(\eta,{\dot{\eta}}) 定义与 [1] 中的不同,后者使用克里斯托弗符号推导科里奥利矩阵。由于 C(\eta,{\dot{\eta}}) 并非唯一,因此可以有多种定义方法。但是,欧拉-拉格朗日方程中使用的 C(\eta,\dot{\eta})\;\dot{\eta} 项必须是唯一的。本节将证明 C(\eta,{\dot{\eta}}) 的符号定义与 [1] 中的定义是一致的,即 C(\eta,\dot{\eta})\;\dot{\eta}项在两个定义中在数学上是相等的。

利用上一节中得出的 C(\eta,{\dot{\eta}}) 的符号定义来评估 C(\eta,\dot{\eta})\;\dot{\eta} 项。

% Evaluate C times etadot using symbolic definition
phidot   = subsStateVars(diff(phi,t),t);
thetadot = subsStateVars(diff(theta,t),t);
psidot   = subsStateVars(diff(psi,t),t);
Csym_etadot = C*[phidot; thetadot; psidot];

使用 [1] 中得出的 C(\eta,{\dot{\eta}}) 的定义,对 C(\eta,\dot{\eta})\;\dot{\eta} 项进行评估。

% Evaluate C times etadot using reference paper definition
C11 = 0;
C12 = (Iyy - Izz)*(thetadot*cos(phi)*sin(phi) + psidot*sin(phi)^2*cos(theta)) ...
      + (Izz - Iyy)*(psidot*cos(phi)^2*cos(theta)) - Ixx*psidot*cos(theta);
C13 = (Izz - Iyy)*psidot*cos(phi)*sin(phi)*cos(theta)^2;
C21 = (Izz - Iyy)*(thetadot*cos(phi)*sin(phi) + psidot*sin(phi)^2*cos(theta)) ...
      + (Iyy - Izz)*psidot*cos(phi)^2*cos(theta) + Ixx*psidot*cos(theta);
C22 = (Izz - Iyy)*phidot*cos(phi)*sin(phi);
C23 = - Ixx*psidot*sin(theta)*cos(theta) + Iyy*psidot*sin(phi)^2*sin(theta)*cos(theta) ...
      + Izz*psidot*cos(phi)^2*sin(theta)*cos(theta);
C31 = (Iyy - Izz)*psidot*cos(theta)^2*sin(phi)*cos(phi) - Ixx*thetadot*cos(theta);
C32 = (Izz - Iyy)*(thetadot*cos(phi)*sin(phi)*sin(theta) + phidot*sin(phi)^2*cos(theta)) ...
      + (Iyy - Izz)*phidot*cos(phi)^2*cos(theta) + Ixx*psidot*sin(theta)*cos(theta) ...
      - Iyy*psidot*sin(phi)^2*sin(theta)*cos(theta) - Izz*psidot*cos(phi)^2*sin(theta)*cos(theta);
C33 = (Iyy - Izz)*phidot*cos(phi)*sin(phi)*cos(theta)^2 ...
      - Iyy*thetadot*sin(phi)^2*cos(theta)*sin(theta) ...
      - Izz*thetadot*cos(phi)^2*cos(theta)*sin(theta) + Ixx*thetadot*cos(theta)*sin(theta);
Cpaper = [C11, C12, C13; C21, C22, C23; C31 C32 C33];
Cpaper_etadot = Cpaper*[phidot; thetadot; psidot];
Cpaper_etadot = subsStateVars(Cpaper_etadot,t);

证明这两个定义对 C(\eta,\dot{\eta})\;\dot{\eta} 项给出了相同的结果。

tf_Cdefinition = isAlways(Cpaper_etadot == Csym_etadot)
tf_Cdefinition = 3x1 logical array

   1
   1
   1

四、查找运动方程

求出 12 个状态的运动方程。

根据 [1],求出扭矩 τ B 在滚转、俯仰和偏航角方向上的扭矩:

  • 通过降低第 2 个转子的速度和提高第 4 个转子的速度来设定滚转运动。
  • 通过降低第 1 个转子的速度和提高第 3 个转子的速度来设置俯仰运动。
  • 偏航运动是通过增大两个相对旋翼的速度和减小另外两个旋翼的速度来实现的。

求转子 T 在机身 Z 轴方向上的总推力。

% Define fixed parameters and control input
% k: lift constant
% l: distance between rotor and center of mass
% m: quadrotor mass
% b: drag constant
% g: gravity
% ui: squared angular velocity of rotor i as control input
syms k l m b g u1 u2 u3 u4

% Torques in the direction of phi, theta, psi
tau_beta = [l*k*(-u2+u4); l*k*(-u1+u3); b*(-u1+u2-u3+u4)];

% Total thrust
T = k*(u1+u2+u3+u4);

接下来,创建符号函数来表示随时间变化的位置。为线性位置、角度及其时间导数定义 12 个状态 \left[\xi;\eta;\;{\dot{\xi}};\;{\dot{\eta}}\right]。定义好状态后,用显式时间项代替,以简化符号。

% Create symbolic functions for time-dependent positions
syms x(t) y(t) z(t)

% Create state variables consisting of positions, angles,
% and their derivatives
state = [x; y; z; phi; theta; psi; diff(x,t); diff(y,t); ...
    diff(z,t); diff(phi,t); diff(theta,t); diff(psi,t)];
state = subsStateVars(state,t);

建立描述 12 个状态 f=\left[\,\dot{\xi};\,\dot{\eta}\,;\,\ddot{\xi}\,;\,\ddot{\eta}\,\right] 的时间导数的 12 个运动方程。线性加速度的微分方程为 \ddot{\xi}\,=-(0,0,g)^{\Gamma}+R(0,0,T)^{\Gamma}/m.,角加速度的微分方程为 \ddot{\eta}=J^{-1}\bigl(\tau B-C(\eta,\dot{\eta})\,\dot{\eta}\,\bigr)\,.。代入明确的时间相关项,以简化符号。

f = [ % Set time-derivative of the positions and angles
      state(7:12);

      % Equations for linear accelerations of the center of mass
      -g*[0;0;1] + R*[0;0;T]/m;

      % Euler–Lagrange equations for angular dynamics
      inv(J)*(tau_beta - C*state(10:12))
];

f = subsStateVars(f,t);

在前面的步骤中,固定参数被定义为符号变量,以紧跟文献 [1] 的推导。接下来,用给定值替换固定参数。这些值用于设计四旋翼飞行器特定配置的轨迹跟踪控制器。替换固定参数后,使用简化对运动方程进行代数简化。

% Replace fixed parameters with given values here
IxxVal = 1.2;
IyyVal = 1.2;
IzzVal = 2.3;
kVal = 1;
lVal = 0.25;
mVal = 2;
bVal = 0.2;
gVal = 9.81;

f = subs(f, [Ixx Iyy Izz k l m b g], ...
    [IxxVal IyyVal IzzVal kVal lVal mVal bVal gVal]);
f = simplify(f);

五、为非线性模型预测控制查找雅各布因子并生成文件

最后,使用符号数学工具箱查找非线性模型函数的解析雅各布因子并生成 MATLAB® 文件。这一步骤对于提高使用模型预测控制工具箱™ 解决轨迹跟踪非线性模型时的计算效率非常重要。更多信息,请参阅 nlmpc(模型预测控制工具箱)和 Specify Prediction Model for Nonlinear MPC(模型预测控制工具箱)。

查找状态函数相对于状态变量和控制输入的雅各布。

% Calculate Jacobians for nonlinear prediction model
A = jacobian(f,state);
control = [u1; u2; u3; u4];
B = jacobian(f,control);

生成状态函数和状态函数 Jacobians 的 MATLAB 文件。这些文件可用于设计轨迹跟踪控制器,详见《使用非线性模型预测控制(模型预测控制工具箱)控制四旋翼飞行器》。

% Create QuadrotorStateFcn.m with current state and control
% vectors as inputs and the state time-derivative as outputs
matlabFunction(f,'File','QuadrotorStateFcn', ...
    'Vars',{state,control});

% Create QuadrotorStateJacobianFcn.m with current state and control
% vectors as inputs and the Jacobians of the state time-derivative
% as outputs
matlabFunction(A,B,'File','QuadrotorStateJacobianFcn', ...
    'Vars',{state,control});

您可以在 getQuadrotorDynamicsAndJacobian.m 文件中访问该脚本中的代码。

六、函数

function [Rz,Ry,Rx] = rotationMatrixEulerZYX(phi,theta,psi)
% Euler ZYX angles convention
    Rx = [ 1,           0,          0;
           0,           cos(phi),  -sin(phi);
           0,           sin(phi),   cos(phi) ];
    Ry = [ cos(theta),  0,          sin(theta);
           0,           1,          0;
          -sin(theta),  0,          cos(theta) ];
    Rz = [cos(psi),    -sin(psi),   0;
          sin(psi),     cos(psi),   0;
          0,            0,          1 ];
    if nargout == 3
        % Return rotation matrix per axes
        return;
    end
    % Return rotation matrix from body frame to inertial frame
    Rz = Rz*Ry*Rx;
end

function stateExpr = subsStateVars(timeExpr,var)
    if nargin == 1 
        var = sym("t");
    end
    repDiff = @(ex) subsStateVarsDiff(ex,var);
    stateExpr = mapSymType(timeExpr,"diff",repDiff);
    repFun = @(ex) subsStateVarsFun(ex,var);
    stateExpr = mapSymType(stateExpr,"symfunOf",var,repFun);
    stateExpr = formula(stateExpr);
end

function newVar = subsStateVarsFun(funExpr,var)
    name = symFunType(funExpr);
    name = replace(name,"_Var","");
    stateVar = "_" + char(var);
    newVar = sym(name + stateVar);
end

function newVar = subsStateVarsDiff(diffExpr,var)
    if nargin == 1 
      var = sym("t");
    end
    c = children(diffExpr);
    if ~isSymType(c{1},"symfunOf",var)
      % not f(t)
      newVar = diffExpr;
      return;
    end
    if ~any([c{2:end}] == var)
      % not derivative wrt t only
      newVar = diffExpr;
      return;
    end
    name = symFunType(c{1});
    name = replace(name,"_Var","");
    extension = "_" + join(repelem("d",numel(c)-1),"") + "ot";
    stateVar = "_" + char(var);
    newVar = sym(name + extension + stateVar);
end

七、参考资料

[1] Raffo, Guilherme V., Manuel G. Ortega, and Francisco R. Rubio. "An integral predictive/nonlinear ℋ∞ control structure for a quadrotor helicopter". Automatica 46, no. 1 (January 2010): 29–39. https://doi.org/10.1016/j.automatica.2009.10.018.

[2] Tzorakoleftherakis, Emmanouil, and Todd D. Murphey. "Iterative sequential action control for stable, model-based control of nonlinear systems." IEEE Transactions on Automatic Control 64, no. 8 (August 2019): 3170–83. https://doi.org/10.1109/TAC.2018.2885477.

[3] Luukkonen, Teppo. "Modelling and control of quadcopter". Independent research project in applied mathematics, Aalto University, 2011.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/315449.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++|44.智能指针

文章目录 智能指针unique_ptr特点一——无法进行复制 shared_ptr特点一——可复制特点二——计数器(用于确定删除的时机) 其他 智能指针 通常的指针是需要特殊地去申请对应的空间,并在不使用的时候还需要人工去销毁。 而智能指针相对普通的指…

ubuntu20.04网络问题以及解决方案

1.网络图标消失,wired消失,ens33消失 参考:https://blog.51cto.com/u_204222/2465609 https://blog.csdn.net/qq_42265170/article/details/123640669 原始是在虚拟机中切换网络连接方式(桥接和NAT), 解决…

Java-网络爬虫(三)

文章目录 前言一、爬虫的分类二、跳转页面的爬取三、网页去重四、综合案例1. 案例三 上篇:Java-网络爬虫(二) 前言 上篇文章介绍了 webMagic,通过一个简单的入门案例,对 webMagic 的核心对象和四大组件都做了简要的说明,以下内容…

LeetCode---121双周赛---数位dp

题目列表 2996. 大于等于顺序前缀和的最小缺失整数 2997. 使数组异或和等于 K 的最少操作次数 2998. 使 X 和 Y 相等的最少操作次数 2999. 统计强大整数的数目 一、大于等于顺序前缀和的最小缺失整数 简单的模拟题,只要按照题目的要求去写代码即可,…

高级分布式系统-第6讲 分布式系统的容错性--进程的容错

分布式系统的容错原则既适用于硬件, 也适用于软件。 两者的主要区别在于硬件部件的同类复制相对容易, 而软件组件在运行中的同类复制( 进程复制) 涉及到更为复杂的分布式操作系统的容错机制。 以下是建立进程失效容错机制的一些基…

腾讯云添加SSL证书

一、进入腾讯云SSL证书: ssl证书控制台地址 选择“我的证书”,点击"申请免费证书" 2、填写域名和邮箱,点击“提交申请” 在此页面中会出现主机记录和记录值。 2、进入云解析 DNS:云解析DNS地址 进入我的解析-记录…

css3基础语法与盒模型

css3基础语法与盒模型 前言CSS3基础入门css3的书写位置内嵌式外链式导入式(工作中几乎不用)行内式 css3基本语法css3选择器标签选择器id选择器class类名原子类复合选择器伪类元素关系选择器序号选择器属性选择器css3新增伪类![在这里插入图片描述](https…

AI教我学编程之C#类型

前言 在上一课 中我们通过C#入门程序了解到关于C#的基础知识,这节课我们来感受作为C家族最大的黑马,在TIOBE榜单 上受欢迎程度未来两个月可能超越java的存在:C#的魅力 重点先知 1、C#程序或DLL的源代码是一组类型声明。 2、对于可执行程序&…

高压消防泵:科技与安全性的完美结合

在现代社会,随着科技的不断发展,各种高科技设备层出不穷,为我们的生活带来了极大的便利。在森林火灾扑救领域,恒峰智慧科技研发的高压消防泵作为一种高效、节能、绿色、环保的优质设备,将科技与安全性完美地结合在一起…

【面试突击】注册中心面试实战

🌈🌈🌈🌈🌈🌈🌈🌈 欢迎关注公众号(通过文章导读关注:【11来了】),及时收到 AI 前沿项目工具及新技术 的推送 发送 资料 可领取 深入理…

uniapp 如何使用echarts 以及解决tooltip自定义不生效问题

使用的是echarts-for-wx插件&#xff1b; 正常写法案例&#xff1a;给tooltip数值加个% <template><view><uni-ec-canvas class"uni-ec-canvas"id"uni-ec-canvas"ref"canvas"canvas-id"uni-ec-canvas":ec"ec&quo…

蚁群算法(ACO)解决旅行商(TSP)问题的python实现

TSP问题 旅行商问题&#xff08;Travelling Salesman Problem, 简记TSP&#xff0c;亦称货郎担问题)&#xff1a;设有n个城市和距离矩阵D [dij]&#xff0c;其中dij表示城市i到城市j的距离&#xff0c;i, j 1, 2 … n&#xff0c;则问题是要找出遍访每个城市恰好一次的一条回…

Salesforce财务状况分析

纵观Salesforce发展史和十几年财报中的信息&#xff0c;Salesforce从中小企业CRM服务的蓝海市场切入&#xff0c;但受限于中小企业的生命周期价值和每用户平均收入小且获客成本和流失率不对等&#xff0c;蓝海同时也是死海。 Salesforce通过收购逐渐补足品牌和产品两块短板&am…

Unity中URP下实现深度贴花

文章目录 前言一、场景设置二、实现思路1、通过深度图求出像素所在视图空间的Z值2、通过模型面片的求出像素在观察空间下的坐标值3、结合两者求出 深度图中像素的 XYZ值4、再将此坐标转换到模型的本地空间&#xff0c;把XY作为UV来进行纹理采样 三、URP下实现1、通过深度图求出…

使用Sqoop将数据从Hadoop导出到关系型数据库

当将数据从Hadoop导出到关系型数据库时&#xff0c;Apache Sqoop是一个非常有用的工具。Sqoop可以轻松地将大数据存储中的数据导出到常见的关系型数据库&#xff0c;如MySQL、Oracle、SQL Server等。本文将深入介绍如何使用Sqoop进行数据导出&#xff0c;并提供详细的示例代码&…

Leetcode10035. 对角线最长的矩形的面积

Every day a Leetcode 题目来源&#xff1a;10035. 对角线最长的矩形的面积 解法1&#xff1a;模拟 给你一个下标从 0 开始的二维整数数组 dimensions。 对于所有下标 i&#xff08;0 < i < dimensions.length&#xff09;&#xff0c;dimensions[i][0] 表示矩形 i …

【复现】Spider-Flow RCE漏洞(CVE-2024-0195)_16

目录 一.概述 二 .漏洞影响 三.漏洞复现 1. 漏洞一&#xff1a; 四.修复建议&#xff1a; 五. 搜索语法&#xff1a; 六.免责声明 一.概述 Spider Flow 是一个高度灵活可配置的爬虫平台&#xff0c;用户无需编写代码&#xff0c;以流程图的方式&#xff0c;即可实现爬虫…

android studio设置gradle和gradle JDK版本

文章目录 1.gradle JDK版本2.gradle版本 1.gradle JDK版本 file -> project structure -> SDK Location -> Gradle Settings -> Gradle JDK -> Download JDK 2.gradle版本 file -> project structure -> Project

在线海报图片设计器、图片编辑器,仿照稿定设计

源码介绍 在线海报设计系统素材设计源码是一个漂亮且功能强大的在线海报图片设计器&#xff0c;仿照稿定设计而成。该系统适用于多种场景&#xff0c;包括海报图片生成、电商分享图、文章长图、视频/公众号封面等。用户无需下载软件&#xff0c;即可轻松实现创意&#xff0c;迅…

redis夯实之路-哨兵(Sentinel)机制详解

Sentinel&#xff08;哨兵&#xff09;保证了redis的高可用性&#xff0c;一个Sentinel或多个Sentinel组成的系统监视多个主从服务器&#xff0c;当主服务器下线时&#xff0c;自动将一个从服务器升级为主服务器。 sentinel的主要功能 集群监控&#xff1a;负责监控redis mas…