目录
一、红黑树简介
二、红黑树的来源
三、什么是红黑树
四、红黑树的性质
五、红黑树的节点定义
六、红黑树的操作
6.1、红黑树的查找
6.2、红黑树的插入
七、红黑树的验证
八、红黑树和AVL树的比较
一、红黑树简介
红黑树是一种自平衡的二叉查找树,是一种高效的查找树。它是由 Rudolf Bayer 于1978年发明,在当时被称为平衡二叉 B 树(symmetric binary B-trees)。后来,在1978年被 Leo J. Guibas 和 Robert Sedgewick 修改为如今的红黑树。红黑树具有良好的效率,它可在 O(logN) 时间内完成查找、增加、删除等操作。
二、红黑树的来源
对于二叉搜索树,如果插入的数据是随机的,那么它就是接近平衡的二叉树,平衡的二叉树,它的操作效率(查询,插入,删除)效率较高,时间复杂度是O(logN)。但是可能会出现一种极端的情况,那就是插入的数据是有序的(递增或者递减),那么所有的节点都会在根节点的右侧或左侧,此时,二叉搜索树就变为了一个链表,它的操作效率就降低了,时间复杂度为O(N),所以可以认为二叉搜索树的时间复杂度介于O(logN)和O(N)之间,视情况而定。那么为了应对这种极端情况,红黑树就出现了,它是具备了某些特性的二叉搜索树,能解决非平衡树问题,红黑树是一种接近平衡的二叉树(说它是接近平衡因为它并没有像AVL树的平衡因子的概念,它只是靠着满足红黑节点的5条性质来维持一种接近平衡的结构,进而提升整体的性能,并没有严格的卡定某个平衡因子来维持绝对平衡)。
三、什么是红黑树
四、红黑树的性质
五、红黑树的节点定义
enum Colour
{
RED,
BLACK,
};
template<class T>
struct RBTreeNode
{
RBTreeNode<T>* _left;
RBTreeNode<T>* _right;
RBTreeNode<T>* _parent;
T _data;
Colour _col;
RBTreeNode(const T& data)
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _data(data)
, _col(RED)
{}
};
这里我们默认节点的颜色是红色:
新插入的节点默认为红色,有利于保持红黑树的平衡性质。当插入一个新节点时,由于新节点默认为红色,可以避免破坏红黑树的规则,从而简化了插入操作后的平衡调整。同时,将新节点默认为红色也有助于降低平衡调整的复杂度,使得红黑树的插入和删除操作更加高效。
六、红黑树的操作
红黑树的基本操作和其他树形结构一样,一般都包括查找、插入、删除等操作。前面说到,红黑树是一种自平衡的二叉查找树,既然是二叉查找树的一种,那么查找过程和二叉查找树一样,比较简单,这里不再赘述。相对于查找操作,红黑树的插入和删除操作就要复杂的多。尤其是删除操作,要处理的情况比较多,下面就来分情况讲解。
6.1、红黑树的查找
Node* Find(const K& key)
{
Node* cur = _root;
KeyOfT kot;
while (cur)
{
if (kot(cur->_data) < key)
{
cur = cur->_right;
}
else if (kot(cur->_data) > key)
{
cur = cur->_left;
}
else
{
return cur;
}
}
return nullptr;
}
6.2、红黑树的插入
- parent:父节点
- sibling:兄弟节点
- uncle:叔父节点( parent 的兄弟节点)
- grand:祖父节点( parent 的父节点)
红黑树的插入过程和二叉查找树插入过程基本类似,不同的地方在于,红黑树插入新节点后,需要进行调整,以满足红黑树的性质。
红黑树节点的颜色要么是红色要么是黑色,那么在插入新节点时,这个节点应该是红色,原因也不难理解。如果插入的节点是黑色,那么这个节点所在路径比其他路径多出一个黑色节点,这个调整起来会比较麻烦(参考红黑树的删除操作,就知道为啥多一个或少一个黑色节点时,调整起来这么麻烦了)。如果插入的节点是红色,此时所有路径上的黑色节点数量不变,仅可能会出现两个连续的红色节点的情况。这种情况下,通过变色和旋转进行调整即可,比之前的简单多了。所以插入的时候将节点设置为红色,可以保证满足性质 1、2、4、5 ,只有性质3不一定满足,需要进行相关调整。如果是添加根节点,则将节点设定为黑色。
情况一、 cur为红,p为红,g为黑,u存在且为红
解决方法:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。
如果g是根节点,调整完成后,需要将g改成黑色;
如果g是子树,g一定有双亲,且g的双亲如果是红色,需要继续向上调整,否则不用。
情况二、cur为红,p为红,g为黑,u不存在 / u存在且为黑
解决方法:
-
如果p为g的左孩子,cur为p的左孩子,则进行右单旋转,p变黑,g变红
-
如果p为g的右孩子,cur为p的右孩子,则进行左单旋转,p变黑,g变红
情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑
和情况而类似,只不过情况而是单旋,情况三单旋解决不了问题,所以要双旋。
解决方法:
-
如果p为g的左孩子,cur为p的右孩子,则针对p做左单旋转,p旋转后再对g进行右单旋,旋转后将cur变黑,g变红
-
如果p为g的右孩子,cur为p的左孩子,则针对p做右单旋转,p旋转后再对g进行左单旋,旋转后将cur变黑,g变红
插入函数的实现:
bool Insert(const T& data)
{
if (_root == nullptr)
{
_root = new Node(data);
_root->_col = BLACK;
return true;
}
KeyOfT kot;
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (kot(cur->_data) < kot(data))
{
parent = cur;
cur = cur->_right;
}
else if (kot(cur->_data) > kot(data))
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(data);
if (kot(parent->_data) > kot(data))
{
parent->_left = cur;
}
else
{
parent->_right = cur;
}
cur->_parent = parent;
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
if (grandfather->_left == parent)
{
Node* uncle = grandfather->_right;
// 情况1:u存在且为红,变色处理,并继续往上处理
if (uncle && uncle->_col == RED)
{
parent->_col = BLACK;
uncle->_col = BLACK;
grandfather->_col = RED;
// 继续往上调整
cur = grandfather;
parent = cur->_parent;
}
else // 情况2+3:u不存在/u存在且为黑,旋转+变色
{
// g
// p u
// c
if (cur == parent->_left)
{
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
// g
// p u
// c
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
//parent->_col = RED;
grandfather->_col = RED;
}
break;
}
}
else // (grandfather->_right == parent)
{
// g
// u p
// c
Node* uncle = grandfather->_left;
// 情况1:u存在且为红,变色处理,并继续往上处理
if (uncle && uncle->_col == RED)
{
parent->_col = BLACK;
uncle->_col = BLACK;
grandfather->_col = RED;
// 继续往上调整
cur = grandfather;
parent = cur->_parent;
}
else // 情况2+3:u不存在/u存在且为黑,旋转+变色
{
// g
// u p
// c
if (cur == parent->_right)
{
RotateL(grandfather);
grandfather->_col = RED;
parent->_col = BLACK;
}
else
{
// g
// u p
// c
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
return true;
}
旋转代码实现:
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
Node* ppnode = parent->_parent;
subR->_left = parent;
parent->_parent = subR;
if (ppnode == nullptr)
{
_root = subR;
_root->_parent = nullptr;
}
else
{
if (ppnode->_left == parent)
{
ppnode->_left = subR;
}
else
{
ppnode->_right = subR;
}
subR->_parent = ppnode;
}
}
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
subLR->_parent = parent;
Node* ppnode = parent->_parent;
subL->_right = parent;
parent->_parent = subL;
if (parent == _root)
{
_root = subL;
_root->_parent = nullptr;
}
else
{
if (ppnode->_left == parent)
{
ppnode->_left = subL;
}
else
{
ppnode->_right = subL;
}
subL->_parent = ppnode;
}
}
七、红黑树的验证
bool IsRBTree()
{
//空树
if (_root == nullptr)
{
return true;
}
//根节点为黑色
if (_root->_col == RED)
{
cout << "根节点为红色" << endl;
return false;
}
//黑色结点数量各路径上相同
//先走一条得到基准值
int Blacknum = 0;
Node* cur = _root;
while (cur)
{
if (cur->_col == BLACK)
Blacknum++;
cur = cur->_left;
}
//检查子树
int i = 0;
return _IsRBTree(_root, Blacknum, i);
}
bool _IsRBTree(Node* root, int blacknum, int count)
{
//递归到空节点
if (root == nullptr)
{
if (blacknum == count)
return true;
cout << "各路径上黑色节点个数不同" << endl;
return false;
}
//子节点为红则检查父节点是否为红(通过父节点检查子节点会遇到空节点)
if (root->_col == RED && root->_parent->_col == RED)
{
cout << "存在连续红色节点" << endl;
return false;
}
//计数黑结点
if (root->_col == BLACK)
count++;
//递归左右子树
return _IsRBTree(root->_left, blacknum, count) && _IsRBTree(root->_right, blacknum, count);
}
八、红黑树和AVL树的比较
- AVL树的时间复杂度虽然优于红黑树,但是对于现在的计算机,cpu太快,可以忽略性能差异
- 红黑树的插入删除比AVL树更便于控制操作
- 红黑树整体性能略优于AVL树(红黑树旋转情况少于AVL树)