【LangChain学习之旅】—(6) 提示工程(下):用思维链和思维树提升模型思考质量

【LangChain学习之旅】—(6) 提示工程(下):用思维链和思维树提升模型思考质量

  • 什么是 Chain of Thought
  • Few-Shot CoT
  • Zero-Shot CoT
  • Chain of Thought 实战
  • CoT 的模板设计
  • 程序的完整框架
  • Tree of Thought
  • 总结

Reference:LangChain 实战课

什么是 Chain of Thought

CoT 这个概念来源于学术界,是谷歌大脑的 Jason Wei 等人于 2022 年在论文《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models(自我一致性提升了语言模型中的思维链推理能力)》中提出来的概念。它提出,如果生成一系列的中间推理步骤,就能够显著提高大型语言模型进行复杂推理的能力。

Few-Shot CoT

Few-Shot CoT 简单的在提示中提供了一些链式思考示例(Chain-of-Thought Prompting),足够大的语言模型的推理能力就能够被增强。简单说,就是给出一两个示例,然后在示例中写清楚推导的过程。
在这里插入图片描述

论文中给出了一个大模型通过思维链做数学题的示例。图左和图右,大模型都读入了 OneShot 示例,但是图左只给出了答案,而图右则在 OneShot 示例中给出了解题的具体思路。结果,只给出了答案的模型推理错误,而给出解题思路后,同一个模型生成了正确的答案。

在三种大型语言模型的实验中,CoT 在一系列的算术、常识和符号推理任务中都提高了性能。在 GSM8K 数学问题基准测试中,通过 CoT 指导后,大模型的表现可以达到当时最先进的准确性。

CoT 从概念上非常容易理解,从应用上非常容易操作。虽然简单,但这种思想可以给我们的开发过程带来很多启发。

比如,假设我们正在开发一个 AI 花店助手,它的任务是帮助用户选择他们想要的花,并生成一个销售列表。在这个过程中,我们可以使用 CoT 来引导 AI 的推理过程。

  1. 问题理解:首先,AI 需要理解用户的需求。例如,用户可能会说:“今天要参加朋友的生日 Party,想送束花祝福她。”我们可以给 AI 一个提示模板,里面包含示例:“遇到 XX 问题,我先看自己有没有相关知识,有的话,就提供答案;没有,就调用工具搜索,有了知识后再试图解决。”—— 这就是给了 AI 一个思维链的示例。
  2. 信息搜索:接下来,AI 需要搜索相关信息。例如,它可能需要查找哪些花最适合生日派对。
  3. 决策制定:基于收集到的信息,AI 需要制定一个决策。我们可以通过思维链让他详细思考决策的流程,先做什么后做什么。例如,我们可以给它一个示例:“遇到生日派对送花的情况,我先考虑用户的需求,然后查看鲜花的库存,最后决定推荐一些玫瑰和百合,因为这些花通常适合生日派对。”—— 那么有了生日派对这个场景做示例,大模型就能把类似的思维流程运用到其它场景。
  4. 生成销售列表:最后,AI 使用 OutputParser 生成一个销售列表,包括推荐的花和价格。

在这个过程中,整体上,思维链引导 AI 从理解问题,到搜索信息,再到制定决策,最后生成销售列表。这种方法不仅使 AI 的推理过程更加清晰,也使得生成的销售列表更加符合用户的需求。具体到每一个步骤,也可以通过思维链来设计更为详细的提示模板,来引导模型每一步的思考都遵循清晰准确的逻辑。

其实 LangChain 的核心组件 Agent 的本质就是进行好的提示工程,并大量地使用预置的 FewShot 和 CoT 模板。这个在之后的课程学习中我们会理解得越来越透彻。

Zero-Shot CoT

下面的这两个 CoT 提示模板的例子,来自于 Google Research 和东京大学的论文《Large Language Models are Zero-Shot Reasoners》。

图中的(d)示例非常非常有意思,在 Zero-Shot CoT 中,你只要简单地告诉模型“让我们一步步的思考(Let’s think step by step)”,模型就能够给出更好的答案!

在这里插入图片描述
不由得让我联想起最简单的提示工程,角色设定——模型回答之前,先告诉它“你是一个很有经验的 XX 专家”,模型应该就会在开始胡说八道之前三思。

简单总结一下:Few-Shot CoT,指的就是在带有示例的提示过程中,加入思考的步骤,从而引导模型给出更好的结果。而 Zero-Shot CoT,就是直接告诉模型要一步一步地思考,慢慢地推理。

Chain of Thought 实战

现在,就让我带着你完成一次 Chain of Thought 的 LangChain 应用开发实战。

项目需求:在这个示例中,你正在开发一个 AI 运营助手,我们要展示 AI 如何根据用户的需求推理和生成答案。然后,AI 根据当前的用户请求进行推理,提供了具体的花卉建议并解释了为什么选择这些建议。

在这个过程中,AI 需要理解客户的需求之后,按部就班的思考,然后给出最符合逻辑的回答。

CoT 的模板设计

针对这个聊天机器人的需求,设计了下面这样的思维链模板。

作为一个为花店电商公司工作的 AI 助手,我的目标是帮助客户根据他们的喜好做出明智的决定。

我会按部就班的思考,先理解客户的需求,然后考虑各种鲜花的涵义,最后根据这个需求,给出我的推荐。

同时,我也会向客户解释我这样推荐的原因。

示例 1: 人类:我想找一种象征爱情的花。
AI:首先,我理解你正在寻找一种可以象征爱情的花。在许多文化中,红玫瑰被视为爱情的象征,这是因为它们的红色通常与热情和浓烈的感情联系在一起。因此,考虑到这一点,我会推荐红玫瑰。红玫瑰不仅能够象征爱情,同时也可以传达出强烈的感情,这是你在寻找的。

示例 2: 人类:我想要一些独特和奇特的花。
AI:从你的需求中,我理解你想要的是独一无二和引人注目的花朵。兰花是一种非常独特并且颜色鲜艳的花,它们在世界上的许多地方都被视为奢侈品和美的象征。因此,我建议你考虑兰花。选择兰花可以满足你对独特和奇特的要求,而且,兰花的美丽和它们所代表的力量和奢侈也可能会吸引你。

AI 的模板开始于对其角色的阐述,并给出了一些先前的对话示例(Few-Shot Learning)来帮助 AI 理解如何处理这种类型的请求。这些示例展示了 AI 如何根据思维链进行思考,给出深思熟虑之后的答案。

程序的完整框架

程序的完整代码如下:

# 设置环境变量和API密钥
import os
os.environ["OPENAI_API_KEY"] = '你的OpenAI API Key'

# 创建聊天模型
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI(temperature=0)

# 设定 AI 的角色和目标
role_template = "你是一个为花店电商公司工作的AI助手, 你的目标是帮助客户根据他们的喜好做出明智的决定"

# CoT 的关键部分,AI 解释推理过程,并加入一些先前的对话示例(Few-Shot Learning)
cot_template = """
作为一个为花店电商公司工作的AI助手,我的目标是帮助客户根据他们的喜好做出明智的决定。 

我会按部就班的思考,先理解客户的需求,然后考虑各种鲜花的涵义,最后根据这个需求,给出我的推荐。
同时,我也会向客户解释我这样推荐的原因。

示例 1:
  人类:我想找一种象征爱情的花。
  AI:首先,我理解你正在寻找一种可以象征爱情的花。在许多文化中,红玫瑰被视为爱情的象征,这是因为它们的红色通常与热情和浓烈的感情联系在一起。因此,考虑到这一点,我会推荐红玫瑰。红玫瑰不仅能够象征爱情,同时也可以传达出强烈的感情,这是你在寻找的。

示例 2:
  人类:我想要一些独特和奇特的花。
  AI:从你的需求中,我理解你想要的是独一无二和引人注目的花朵。兰花是一种非常独特并且颜色鲜艳的花,它们在世界上的许多地方都被视为奢侈品和美的象征。因此,我建议你考虑兰花。选择兰花可以满足你对独特和奇特的要求,而且,兰花的美丽和它们所代表的力量和奢侈也可能会吸引你。
"""
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
system_prompt_role = SystemMessagePromptTemplate.from_template(role_template)
system_prompt_cot = SystemMessagePromptTemplate.from_template(cot_template)

# 用户的询问
human_template = "{human_input}"
human_prompt = HumanMessagePromptTemplate.from_template(human_template)

# 将以上所有信息结合为一个聊天提示
chat_prompt = ChatPromptTemplate.from_messages([system_prompt_role, system_prompt_cot, human_prompt])

prompt = chat_prompt.format_prompt(human_input="我想为我的女朋友购买一些花。她喜欢粉色和紫色。你有什么建议吗?").to_messages()

> 这里是引用

# 接收用户的询问,返回回答结果
response = llm(prompt)
print(response)

程序中,首先设置环境变量 OpenAI 的 API 密钥,以便能够使用 OpenAI 的 GPT-4 模型。然后创建聊天模型:通过调用ChatOpenAI类,创建了一个聊天模型。设置 temperature=0 可以让模型生成更确定性的回答,即输出更倾向于最可能的结果。

接着定义了 AI 的角色和目标,该 AI 为花店电商公司的助手,其目标是根据客户的喜好来提供购买建议。紧接着,定义 CoT 模板,其中包括了 AI 的角色和目标描述、思考链条以及遵循思考链条的一些示例,显示了 AI 如何理解问题,并给出建议。

之后,使用 PromptTemplate from_template 方法,来生成相应的询问模板。其中包括用于指导模型的SystemMessagePromptTemplate和用于传递人类问题的 HumanMessagePromptTemplate

然后,我使用了 ChatPromptTemplate.from_messages 方法,整合上述定义的角色,CoT 模板和用户询问,生成聊天提示。

最后,将生成的聊天提示输入模型中,获得模型的回答,并打印出来。

在 Few-Shot CoT 提示的指引之下,模型针对我们的问题,从问题中的具体需求出发,返回了不错的建议。

现在,根据你的需求:你正在寻找你的女朋友喜欢的粉色和紫色的花。

首先,我从理解你的需求出发,只会推荐粉色或紫色,或者两者的组合的花。这些可能包括粉色的玫瑰,紫色的兰花,或者是粉色和紫色的花的混合花束。玫瑰是象征爱情和亲情的经典符号,而兰花象征着美丽和力量。这两种花都蕴含很棒的内涵。当然了,无论你选择哪种花卉,重要的是表达出你对她的爱和关心。记得附上一张温馨的贺卡,写下你的真挚祝福。

Tree of Thought

CoT 这种思想,为大模型带来了更好的答案,然而,对于需要探索或预判战略的复杂任务来说,传统或简单的提示技巧是不够的。基于 CoT 的思想,Yao 和 Long 等人几乎在同一时间在论文《Tree of Thoughts: Deliberate Problem Solving
with Large Language Models》和《Large Language Model Guided Tree-of-Thought》中,进一步提出了思维树(Tree of Thoughts,ToT)框架,该框架基于思维链提示进行了总结,引导语言模型探索把思维作为中间步骤来解决通用问题。

ToT 是一种解决复杂问题的框架,它在需要多步骤推理的任务中,引导语言模型搜索一棵由连贯的语言序列(解决问题的中间步骤)组成的思维树,而不是简单地生成一个答案。ToT 框架的核心思想是:让模型生成和评估其思维的能力,并将其与搜索算法(如广度优先搜索和深度优先搜索)结合起来,进行系统性地探索和验证。
在这里插入图片描述
ToT 框架为每个任务定义具体的思维步骤和每个步骤的候选项数量。例如,要解决一个数学推理任务,先把它分解为 3 个思维步骤,并为每个步骤提出多个方案,并保留最优的 5 个候选方案。然后在多条思维路径中搜寻最优的解决方案。

这种方法的优势在于,模型可以通过观察和评估其自身的思维过程,更好地解决问题,而不仅仅是基于输入生成输出。这对于需要深度推理的复杂任务非常有用。此外,通过引入强化学习、集束搜索等技术,可以进一步提高搜索策略的性能,并让模型在解决新问题或面临未知情况时有更好的表现。

下面我们应用 ToT 的思想,给出一个鲜花运营方面的示例。

假设一个顾客在鲜花网站上询问:“我想为我的妻子购买一束鲜花,但我不确定应该选择哪种鲜花。她喜欢淡雅的颜色和花香。”

AI(使用 ToT 框架):

思维步骤 1:理解顾客的需求。顾客想为妻子购买鲜花。顾客的妻子喜欢淡雅的颜色和花香。

思维步骤 2:考虑可能的鲜花选择。
候选 1:百合,因为它有淡雅的颜色和花香。
候选 2:玫瑰,选择淡粉色或白色,它们通常有花香。
候选3:紫罗兰,它有淡雅的颜色和花香。
候选 4:桔梗,它的颜色淡雅但不一定有花香。
候选 5:康乃馨,选择淡色系列,它们有淡雅的花香。

思维步骤 3:根据顾客的需求筛选最佳选择。百合和紫罗兰都符合顾客的需求,因为它们都有淡雅的颜色和花香。淡粉色或白色的玫瑰也是一个不错的选择。桔梗可能不是最佳选择,因为它可能没有花香。康乃馨是一个可考虑的选择。

思维步骤 4:给出建议。“考虑到您妻子喜欢淡雅的颜色和花香,我建议您可以选择百合或紫罗兰。淡粉色或白色的玫瑰也是一个很好的选择。希望这些建议能帮助您做出决策!”

这个例子,可以作为 FewShot 示例之一,传递给模型,让他学着实现 ToT。

通过在具体的步骤中产生多条思考路径,ToT 框架为解决复杂问题提供了一种新的方法,这种方法结合了语言模型的生成能力、搜索算法以及强化学习,以达到更好的效果。

总结

  • CoT 的核心思想是通过生成一系列中间推理步骤来增强模型的推理能力。在 Few-Shot CoT 和 Zero-Shot CoT 两种应用方法中,前者通过提供链式思考示例传递给模型,后者则直接告诉模型进行要按部就班的推理。
  • ToT 进一步扩展了 CoT 的思想,通过搜索由连贯的语言序列组成的思维树来解决复杂问题。我通过一个鲜花选择的实例,展示了如何在实际应用中使用 ToT 框架。在 GitHub 上有一个 Repo,专门给大家介绍 ToT 的应用方法和实例,他们还给出了几个非常简单的通用 ToT 提示语,就像下面这样。

请你模拟三位出色、逻辑性强的专家合作回答一个问题。每个人都详细地解释他们的思考过程,考虑到其他人之前的解释,并公开承认错误。在每一步,只要可能,每位专家都会在其他人的思考基础上进行完善和建设,并承认他们的贡献。他们继续,直到对问题有一个明确的答案。为了清晰起见,您的整个回应应该是一个 Markdown 表格。
问题是…

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/314635.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

一阶低通滤波器

一阶低通滤波器 X为输入,Y为滤波后得到的输出值;本次的输出结果主要取决于上次的滤波输出值,其中a是和滤波效果有关的一个参数,称为滤波系数;它决定新采样值在本次滤波结果中所占的权重; 滤波系数a越小&a…

AI绘画软件Stable Diffusion模型/Lora/VAE文件存放位置

型下载说明(下载模型后输入对应参数即可生成) 建议直接去civitai.com找模型,如果无法找到可以在幕后模型区找也可以去, 下载好后放入对应的文件夹。进入127.0.0.1:7680 左上角刷新即可看到新的模型。 模型种类 大模型 大模型特…

揭秘人工智能:探索智慧未来

🌈个人主页:聆风吟 🔥系列专栏:数据结构、网络奇遇记 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋前言一. 什么是人工智能?二. 人工智能的关键技术2.1 机器学习2.2 深度学习2.1 计算机…

【一文详解】知识分享:(C#开发学习快速入门)

面向对象(OOP) c语言是面向过程。 c是面向过程面向对象。 c#是纯粹的面向对象: 核心思想是以人的思维习惯来分析和解决问题。万物皆对象。 面向对象开发步骤: 分析对象 特征行为关系(对象关系/类关系) 写代码: 特征–>成员变量 方法–>成员方法 实例化–具体对象 …

一本数学教材严谨和通俗哪个更重要?

一本教材也许无法同时兼顾严谨和通俗,而且在不同的场景下,严谨和通俗的重要性也不尽相同: 在正式的学术场合,严谨当然重要,一些不严谨的教材可能无法通过审校,在读者存在疑问的时候,也不一定能给…

揭露欧拉骗局4.“Σ1/n²=π²/6”里的猫腻

自然数平方倒数求和Σ1/n是一个并不复杂的问题,但它困扰了欧洲大陆整整90年,在欧系数学里它被称为“巴塞尔级数”。 解决巴塞尔级数让欧拉一战成名,然而欧拉采用的方法对数学这门学问是严重的侮辱。数学是工具学科,数学的宗旨是化…

apipost 前端使用云端mock实现自定义返回

目录 一.新建接口 1.选择mock环境 2.设置接口路径,以及相关参数 3.自定应响应示例 4.开启云端mock,设置相应条件 5.更改接口类型post,保存设置,发送请求 6.测试 一.新建接口 1.选择mock环境 如图,更改环境 2.设置接口路径&#xff0c…

68.网游逆向分析与插件开发-角色数据的获取-利用蓝量属性分析角色数据基址

内容参考于:易道云信息技术研究院VIP课 上一个内容:67.网游逆向分析与插件开发-角色数据的获取-分析角色数据基址-CSDN博客 然后分析任何一个东西,逆向分析的本质就是找东西的意思,找东西核心的观念是内存里得有,就是…

内 存 取 证

1.用户密码 从内存中获取到用户admin的密码并且破解密码,以Flag{admin,password}形式提交(密码为6位); 1)查看帮助 -h ./volatility_2.6_lin64_standalone -h 2)获取内存镜像文件的信息 imageinfo ./volatility_2.6_lin64_stand…

【数据库原理】(21)查询处理过程

关系型数据库系统的查询处理流程是数据库性能的关键,该流程涉及到将用户的查询请求转化成有效的数据检索操作。通常可以分为四个阶段:查询分析、查询处理、查询优化和查询执行,如图所示。 第一步:查询分析 这个阶段是整个查询处理的起点。数…

CDH 6.3启动失败,由于日志写入权限原因导致cloudera-scm-server.log未生成

CDH 6.3启动失败,CM之前都能正常启动,服务器重启后,启动出现异常,需要排查具体错误,查看日志,发现日志cloudera-scm-server.log也未生成,不好定位具体原因。于是查看cloudera-scm-server状态&am…

Python流程控制语句

目录 一、分支结构 (一)单分支语句 (二)双分支语句 (三)多分支语句 (四)嵌套的分支语句 二、循环结构 循环结构概述 (一)for循环 (二&am…

最佳解决方案:如何在网络爬虫中解决验证码

Captcha(全自动区分计算机和人类的公开图灵测试)是广泛应用的安全措施,用于区分合法的人类用户和自动化机器人。它通过呈现复杂的挑战,包括视觉上扭曲的文本、复杂的图像或复杂的拼图等方式,要求用户成功解决这些挑战以…

vue3+vite+ts+pinia新建项目(略详细版)

1、新建项目 npm create vite@latest 2、安装依赖 yarn add vue-router yarn add -D @types/node vite-plugin-pages sass sass-loader 3、配置别名 //vite.config.ts import { defineConfig } from vite import path from node:path export default defineConfig({ plu…

【huggingface】【pytorch-image-models】timm框架中使用albumentations库数据增广

文章目录 一、前言二、实操2.1 声明库2.2 定义你的数据增广算子2.3 加入其中 一、前言 问题是这样的,在使用timm框架训练时,发现数据增广不够,想用Albumentations库的数据增广,怎么把后者嵌入到前者的训练中。 其实也是比较简单…

JVM(字节码文件详解)

JVM的组成 类加载器运行时数据区域执行引擎(主要理解垃圾回收器,及时编译器)本地方法 字节码文件的组成 在讲解字节码文件组成前,可以安装使用“jclasslib”工具或idea中“jclasslib”插件进行字节码文件查看 jclasslib的Github地…

写一个简单的Java的Gui文本输入窗口,JFrame的简单使用

JFrame是指一个计算机语言-java的GUI程序的基本思路是以JFrame为基础,它是屏幕上window的对象,能够最大化、最小化、关闭。 Swing的三个基本构造块:标签、按钮和文本字段;但是需要个地方安放它们,并希望用户知道如何处理它们。JFrame 类就是解决这个问题的——它是一个容器…

计算机丢失mfc140.dll怎么办?解决mfc140.dll缺失的3种方法分享

计算机丢失mfc140.dll怎么办?在使用微软办公软件的时候,可能会弹出一个错误提示框说“找不到mfc140.dll,无法继续执行代码”。为了不影响工作效率,我们可能需要亲自动手尝试修复这一问题。以下是一些mfc140.dll缺失的3种方法相关介…

代码随想录算法训练营第17天 | 110.平衡二叉树 + 257. 二叉树的所有路径 + 404.左叶子之和

今日内容 110.平衡二叉树 257. 二叉树的所有路径 404.左叶子之和 110.平衡二叉树 - Easy 题目链接:. - 力扣(LeetCode) 给定一个二叉树,判断它是否是高度平衡的二叉树。 本题中,一棵高度平衡二叉树定义为&#xff1…

PMP报考条件?

一、PMP报考条件很简单: 年龄满足22周岁有官方授权的培训机构给的 35个PDU(学时) 就能报名。 是不是相当于没有条件,题主说的三年内累计60PDU,是续证时才需要的,网上说的4500小时、7500小时项目管理经验&…