C++力扣题目106,105--中序和后序,前序和中序遍历构造二叉树

106.从中序与后序遍历序列构造二叉树

力扣题目链接(opens new window)

根据一棵树的中序遍历与后序遍历构造二叉树。

注意: 你可以假设树中没有重复的元素。

例如,给出

  • 中序遍历 inorder = [9,3,15,20,7]
  • 后序遍历 postorder = [9,15,7,20,3] 返回如下的二叉树:

106. 从中序与后序遍历序列构造二叉树1

思路

首先回忆一下如何根据两个顺序构造一个唯一的二叉树,相信理论知识大家应该都清楚,就是以 后序数组的最后一个元素为切割点,先切中序数组,根据中序数组,反过来再切后序数组。一层一层切下去,每次后序数组最后一个元素就是节点元素。

如果让我们肉眼看两个序列,画一棵二叉树的话,应该分分钟都可以画出来。

流程如图:

106.从中序与后序遍历序列构造二叉树

那么代码应该怎么写呢?

说到一层一层切割,就应该想到了递归。

来看一下一共分几步:

  • 第一步:如果数组大小为零的话,说明是空节点了。

  • 第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。

  • 第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点

  • 第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)

  • 第五步:切割后序数组,切成后序左数组和后序右数组

  • 第六步:递归处理左区间和右区间

不难写出如下代码:(先把框架写出来)

TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {

    // 第一步
    if (postorder.size() == 0) return NULL;

    // 第二步:后序遍历数组最后一个元素,就是当前的中间节点
    int rootValue = postorder[postorder.size() - 1];
    TreeNode* root = new TreeNode(rootValue);

    // 叶子节点
    if (postorder.size() == 1) return root;

    // 第三步:找切割点
    int delimiterIndex;
    for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
        if (inorder[delimiterIndex] == rootValue) break;
    }

    // 第四步:切割中序数组,得到 中序左数组和中序右数组
    // 第五步:切割后序数组,得到 后序左数组和后序右数组

    // 第六步
    root->left = traversal(中序左数组, 后序左数组);
    root->right = traversal(中序右数组, 后序右数组);

    return root;
}

难点大家应该发现了,就是如何切割,以及边界值找不好很容易乱套。

此时应该注意确定切割的标准,是左闭右开,还有左开右闭,还是左闭右闭,这个就是不变量,要在递归中保持这个不变量。

在切割的过程中会产生四个区间,把握不好不变量的话,一会左闭右开,一会左闭右闭,必然乱套!

我在数组:每次遇到二分法,都是一看就会,一写就废 (opens new window)和数组:这个循环可以转懵很多人! (opens new window)中都强调过循环不变量的重要性,在二分查找以及螺旋矩阵的求解中,坚持循环不变量非常重要,本题也是。

首先要切割中序数组,为什么先切割中序数组呢?

切割点在后序数组的最后一个元素,就是用这个元素来切割中序数组的,所以必要先切割中序数组。

中序数组相对比较好切,找到切割点(后序数组的最后一个元素)在中序数组的位置,然后切割,如下代码中我坚持左闭右开的原则:

// 找到中序遍历的切割点
int delimiterIndex;
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
    if (inorder[delimiterIndex] == rootValue) break;
}

// 左闭右开区间:[0, delimiterIndex)
vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
// [delimiterIndex + 1, end)
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );

接下来就要切割后序数组了。

首先后序数组的最后一个元素指定不能要了,这是切割点 也是 当前二叉树中间节点的元素,已经用了。

后序数组的切割点怎么找?

后序数组没有明确的切割元素来进行左右切割,不像中序数组有明确的切割点,切割点左右分开就可以了。

此时有一个很重的点,就是中序数组大小一定是和后序数组的大小相同的(这是必然)。

中序数组我们都切成了左中序数组和右中序数组了,那么后序数组就可以按照左中序数组的大小来切割,切成左后序数组和右后序数组。

代码如下:

// postorder 舍弃末尾元素,因为这个元素就是中间节点,已经用过了
postorder.resize(postorder.size() - 1);

// 左闭右开,注意这里使用了左中序数组大小作为切割点:[0, leftInorder.size)
vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
// [leftInorder.size(), end)
vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());

此时,中序数组切成了左中序数组和右中序数组,后序数组切割成左后序数组和右后序数组。

接下来可以递归了,代码如下:

root->left = traversal(leftInorder, leftPostorder);
root->right = traversal(rightInorder, rightPostorder);

完整代码如下:

class Solution {
private:
    TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
        if (postorder.size() == 0) return NULL;

        // 后序遍历数组最后一个元素,就是当前的中间节点
        int rootValue = postorder[postorder.size() - 1];
        TreeNode* root = new TreeNode(rootValue);

        // 叶子节点
        if (postorder.size() == 1) return root;

        // 找到中序遍历的切割点
        int delimiterIndex;
        for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue) break;
        }

        // 切割中序数组
        // 左闭右开区间:[0, delimiterIndex)
        vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
        // [delimiterIndex + 1, end)
        vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );

        // postorder 舍弃末尾元素
        postorder.resize(postorder.size() - 1);

        // 切割后序数组
        // 依然左闭右开,注意这里使用了左中序数组大小作为切割点
        // [0, leftInorder.size)
        vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
        // [leftInorder.size(), end)
        vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());

        root->left = traversal(leftInorder, leftPostorder);
        root->right = traversal(rightInorder, rightPostorder);

        return root;
    }
public:
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        if (inorder.size() == 0 || postorder.size() == 0) return NULL;
        return traversal(inorder, postorder);
    }
};

相信大家自己就算是思路清晰, 代码写出来一定是各种问题,所以一定要加日志来调试,看看是不是按照自己思路来切割的,不要大脑模拟,那样越想越糊涂。

加了日志的代码如下:(加了日志的代码不要在leetcode上提交,容易超时)

class Solution {
private:
    TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
        if (postorder.size() == 0) return NULL;

        int rootValue = postorder[postorder.size() - 1];
        TreeNode* root = new TreeNode(rootValue);

        if (postorder.size() == 1) return root;

        int delimiterIndex;
        for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue) break;
        }

        vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
        vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );

        postorder.resize(postorder.size() - 1);

        vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
        vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());

        // 以下为日志
        cout << "----------" << endl;

        cout << "leftInorder :";
        for (int i : leftInorder) {
            cout << i << " ";
        }
        cout << endl;

        cout << "rightInorder :";
        for (int i : rightInorder) {
            cout << i << " ";
        }
        cout << endl;

        cout << "leftPostorder :";
        for (int i : leftPostorder) {
            cout << i << " ";
        }
        cout << endl;
         cout << "rightPostorder :";
        for (int i : rightPostorder) {
            cout << i << " ";
        }
        cout << endl;

        root->left = traversal(leftInorder, leftPostorder);
        root->right = traversal(rightInorder, rightPostorder);

        return root;
    }
public:
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        if (inorder.size() == 0 || postorder.size() == 0) return NULL;
        return traversal(inorder, postorder);
    }
};


 

此时应该发现了,如上的代码性能并不好,因为每层递归定义了新的vector(就是数组),既耗时又耗空间,但上面的代码是最好理解的,为了方便读者理解,所以用如上的代码来讲解。

下面给出用下标索引写出的代码版本:(思路是一样的,只不过不用重复定义vector了,每次用下标索引来分割)

class Solution {
private:
    // 中序区间:[inorderBegin, inorderEnd),后序区间[postorderBegin, postorderEnd)
    TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {
        if (postorderBegin == postorderEnd) return NULL;

        int rootValue = postorder[postorderEnd - 1];
        TreeNode* root = new TreeNode(rootValue);

        if (postorderEnd - postorderBegin == 1) return root;

        int delimiterIndex;
        for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue) break;
        }
        // 切割中序数组
        // 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)
        int leftInorderBegin = inorderBegin;
        int leftInorderEnd = delimiterIndex;
        // 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)
        int rightInorderBegin = delimiterIndex + 1;
        int rightInorderEnd = inorderEnd;

        // 切割后序数组
        // 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)
        int leftPostorderBegin =  postorderBegin;
        int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size
        // 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)
        int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);
        int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了

        root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  postorder, leftPostorderBegin, leftPostorderEnd);
        root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);

        return root;
    }
public:
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        if (inorder.size() == 0 || postorder.size() == 0) return NULL;
        // 左闭右开的原则
        return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());
    }
};

那么这个版本写出来依然要打日志进行调试,打日志的版本如下:(该版本不要在leetcode上提交,容易超时

class Solution {
private:
    TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {
        if (postorderBegin == postorderEnd) return NULL;

        int rootValue = postorder[postorderEnd - 1];
        TreeNode* root = new TreeNode(rootValue);

        if (postorderEnd - postorderBegin == 1) return root;

        int delimiterIndex;
        for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue) break;
        }
        // 切割中序数组
        // 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)
        int leftInorderBegin = inorderBegin;
        int leftInorderEnd = delimiterIndex;
        // 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)
        int rightInorderBegin = delimiterIndex + 1;
        int rightInorderEnd = inorderEnd;

        // 切割后序数组
        // 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)
        int leftPostorderBegin =  postorderBegin;
        int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size
        // 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)
        int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);
        int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了

        cout << "----------" << endl;
        cout << "leftInorder :";
        for (int i = leftInorderBegin; i < leftInorderEnd; i++) {
            cout << inorder[i] << " ";
        }
        cout << endl;

        cout << "rightInorder :";
        for (int i = rightInorderBegin; i < rightInorderEnd; i++) {
            cout << inorder[i] << " ";
        }
        cout << endl;

        cout << "leftpostorder :";
        for (int i = leftPostorderBegin; i < leftPostorderEnd; i++) {
            cout << postorder[i] << " ";
        }
        cout << endl;

        cout << "rightpostorder :";
        for (int i = rightPostorderBegin; i < rightPostorderEnd; i++) {
            cout << postorder[i] << " ";
        }
        cout << endl;

        root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  postorder, leftPostorderBegin, leftPostorderEnd);
        root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);

        return root;
    }
public:
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        if (inorder.size() == 0 || postorder.size() == 0) return NULL;
        return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());
    }
};

给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。

示例 1:

输入: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
输出: [3,9,20,null,null,15,7]

示例 2:

输入: preorder = [-1], inorder = [-1]
输出: [-1]

 

思路

本题和106是一样的道理。

我就直接给出代码了。

带日志的版本C++代码如下: (带日志的版本仅用于调试,不要在leetcode上提交,会超时

class Solution {
private:
        TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& preorder, int preorderBegin, int preorderEnd) {
        if (preorderBegin == preorderEnd) return NULL;

        int rootValue = preorder[preorderBegin]; // 注意用preorderBegin 不要用0
        TreeNode* root = new TreeNode(rootValue);

        if (preorderEnd - preorderBegin == 1) return root;

        int delimiterIndex;
        for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue) break;
        }
        // 切割中序数组
        // 中序左区间,左闭右开[leftInorderBegin, leftInorderEnd)
        int leftInorderBegin = inorderBegin;
        int leftInorderEnd = delimiterIndex;
        // 中序右区间,左闭右开[rightInorderBegin, rightInorderEnd)
        int rightInorderBegin = delimiterIndex + 1;
        int rightInorderEnd = inorderEnd;

        // 切割前序数组
        // 前序左区间,左闭右开[leftPreorderBegin, leftPreorderEnd)
        int leftPreorderBegin =  preorderBegin + 1;
        int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin; // 终止位置是起始位置加上中序左区间的大小size
        // 前序右区间, 左闭右开[rightPreorderBegin, rightPreorderEnd)
        int rightPreorderBegin = preorderBegin + 1 + (delimiterIndex - inorderBegin);
        int rightPreorderEnd = preorderEnd;

        cout << "----------" << endl;
        cout << "leftInorder :";
        for (int i = leftInorderBegin; i < leftInorderEnd; i++) {
            cout << inorder[i] << " ";
        }
        cout << endl;

        cout << "rightInorder :";
        for (int i = rightInorderBegin; i < rightInorderEnd; i++) {
            cout << inorder[i] << " ";
        }
        cout << endl;

        cout << "leftPreorder :";
        for (int i = leftPreorderBegin; i < leftPreorderEnd; i++) {
            cout << preorder[i] << " ";
        }
        cout << endl;

        cout << "rightPreorder :";
        for (int i = rightPreorderBegin; i < rightPreorderEnd; i++) {
            cout << preorder[i] << " ";
        }
        cout << endl;


        root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  preorder, leftPreorderBegin, leftPreorderEnd);
        root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, preorder, rightPreorderBegin, rightPreorderEnd);

        return root;
    }

public:
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        if (inorder.size() == 0 || preorder.size() == 0) return NULL;
        return traversal(inorder, 0, inorder.size(), preorder, 0, preorder.size());

    }
};


 

105.从前序与中序遍历序列构造二叉树,最后版本,C++代码:

class Solution {
private:
        TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& preorder, int preorderBegin, int preorderEnd) {
        if (preorderBegin == preorderEnd) return NULL;

        int rootValue = preorder[preorderBegin]; // 注意用preorderBegin 不要用0
        TreeNode* root = new TreeNode(rootValue);

        if (preorderEnd - preorderBegin == 1) return root;

        int delimiterIndex;
        for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue) break;
        }
        // 切割中序数组
        // 中序左区间,左闭右开[leftInorderBegin, leftInorderEnd)
        int leftInorderBegin = inorderBegin;
        int leftInorderEnd = delimiterIndex;
        // 中序右区间,左闭右开[rightInorderBegin, rightInorderEnd)
        int rightInorderBegin = delimiterIndex + 1;
        int rightInorderEnd = inorderEnd;

        // 切割前序数组
        // 前序左区间,左闭右开[leftPreorderBegin, leftPreorderEnd)
        int leftPreorderBegin =  preorderBegin + 1;
        int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin; // 终止位置是起始位置加上中序左区间的大小size
        // 前序右区间, 左闭右开[rightPreorderBegin, rightPreorderEnd)
        int rightPreorderBegin = preorderBegin + 1 + (delimiterIndex - inorderBegin);
        int rightPreorderEnd = preorderEnd;

        root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  preorder, leftPreorderBegin, leftPreorderEnd);
        root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, preorder, rightPreorderBegin, rightPreorderEnd);

        return root;
    }

public:
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        if (inorder.size() == 0 || preorder.size() == 0) return NULL;

        // 参数坚持左闭右开的原则
        return traversal(inorder, 0, inorder.size(), preorder, 0, preorder.size());
    }
};

#思考题

前序和中序可以唯一确定一棵二叉树。

后序和中序可以唯一确定一棵二叉树。

那么前序和后序可不可以唯一确定一棵二叉树呢?

前序和后序不能唯一确定一棵二叉树!,因为没有中序遍历无法确定左右部分,也就是无法分割。

举一个例子:

106.从中序与后序遍历序列构造二叉树2

tree1 的前序遍历是[1 2 3], 后序遍历是[3 2 1]。

tree2 的前序遍历是[1 2 3], 后序遍历是[3 2 1]。

那么tree1 和 tree2 的前序和后序完全相同,这是一棵树么,很明显是两棵树!

所以前序和后序不能唯一确定一棵二叉树!

#总结

之前我们讲的二叉树题目都是各种遍历二叉树,这次开始构造二叉树了,思路其实比较简单,但是真正代码实现出来并不容易。

所以要避免眼高手低,踏实地把代码写出来。

我同时给出了添加日志的代码版本,因为这种题目是不太容易写出来调一调就能过的,所以一定要把流程日志打出来,看看符不符合自己的思路。

大家遇到这种题目的时候,也要学会打日志来调试(如何打日志有时候也是个技术活),不要脑动模拟,脑动模拟很容易越想越乱。

最后我还给出了为什么前序和中序可以唯一确定一棵二叉树,后序和中序可以唯一确定一棵二叉树,而前序和后序却不行。

认真研究完本篇,相信大家对二叉树的构造会清晰很多。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/314288.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

从无到有制作docker镜像、容器详细步骤

1、编写一个Dockerfile文件&#xff0c;内容如下 # 基础镜像jdk,jdk里包含里操作系统 FROM openjdk:8u282-jdk# 工作目录&#xff0c;也就是容器里目录 WORKDIR /home/prq/# 添加ppp目录下的文件到容器/home/prq/里 ADD ./ppp /home/prq/# 暴露端口8080 EXPOSE 8080# 启动脚本…

红黑树之概述

红黑树 R-B Tree&#xff0c;全称是 Red-Black Tree&#xff0c;又称为“红黑树”&#xff0c;它一种特殊的二叉查找树。红黑树的每个节点上都有存储位表示节点的颜色&#xff0c;可以是红(Red)或黑(Black)。 红黑树的特性 &#xff08;1&#xff09;每个节点或者是黑色&…

从DETR到Mask2Former(1):DETR-segmentation结构全解析

网上关于DETR做的detection的解析很多&#xff0c;但是DETR做Segmentation的几乎没有&#xff0c;本文结合DETR的论文与代码&#xff0c;对DETR做一个详细的拆解。理解DETR是理解Mask2Former的基础。 首先得把DETR-segmentation给run起来。Github上DETR的repository&#xff0…

日常工作中,软件测试人员如何避免“背锅”

作为一名软件测试工程师&#xff0c;日常工作中最常打交道的肯定就是开发和产品经理。有沟通就会问题&#xff0c;有问题难免会有争执。那么你肯定听过这些话&#xff1a; “这么弱智的bug你都测不出来吗&#xff1f;” “为啥这个功能还没测完就上线了&#xff1f;” “研发…

AI生成APP工具推荐:5款让你惊艳的AI应用

在这个数字化、智能化的时代&#xff0c;人工智能(AI)已经深入到我们生活的方方面面。其中&#xff0c;AI生成APP工具更是以其强大的创意和生成能力&#xff0c;成为自媒体人和设计师们的得力助手。本文将为你介绍五款实用的AI生成APP工具&#xff0c;它们将为你的创意打开无限…

Pycharm close project 速度缓慢解决办法

解决Pycharm close project缓慢现象 1.问题描述 close project后需要等待很长的时间。 2.解决办法 在Help -> Find Action -> 输入 Registry -> 禁用ide.await.scope.completion 问题解决&#xff01;&#xff01;&#xff01; &#x1f603;&#x1f603;&#x…

opencv拉流出现missing picture in access unit with size 4错误解决

0、应用场景问题 我们使用opencv作为拉流客户端&#xff0c;获取画面后进行图像处理并推流&#xff08;使用ffmpeg库&#xff09;。 opencv解码同样使用ffmpeg库。 我们要求opencv能根据业务不断进行拉流操作&#xff0c;等效的逻辑代码如下&#xff1a; while(1) {printf(&…

YOLOv6s,map值打印成两位小数(原本是显示0.538,变成显示为53.79)

显示结果 更改前&#xff1a; 更改后&#xff1a; 方法 将tools/eval.py中的--do_pr_metric后面改为defaultTrue即可打印出map值原本是显示0.538&#xff0c;变成显示为53.79&#xff0c;方法为&#x1f447; 在YOLOv6-main/yolov6/core/evaler.py中做如下更改&#xff1a…

揭秘H5与小程序的测试奥秘!

最近接触了较多关于H5页面的测试&#xff0c;H5页面的测试除了业务逻辑功能测试外&#xff0c;其他部分的测试方法基本是可以通用的&#xff0c;在此对H5页面和小程序的一些通用测试方法进行总结分享给大家。 H5优势 H5可以跨平台&#xff0c;开发成本相对较低&#xff1b; H…

代码随想录算法训练营第25天 | 216.组合总和III 17.电话号码的字母组合

目录 216.组合总和III &#x1f4a1;解题思路 回溯三部曲 &#x1f4bb;实现代码 17.电话号码的字母组合 &#x1f4a1;解题思路 # 数字和字母如何映射 # 回溯法来解决n个for循环的问题 &#x1f4bb;实现代码 216.组合总和III 题目链接&#xff1a;216.组合总和III …

必须掌握的100+个Linux命令大全【持续更新中】

别有一番风趣的alias … note:: 寒蝉凄切&#xff0c;对长亭晚&#xff0c;骤雨初歇。 柳永《雨霖铃》 Linux alias命令用于设置指令的别名&#xff0c;可以将比较长的命令进行简化。 默认情况下会输出当前的设置&#xff1a; $ alias lls -lah lals -lAh llls -lh lsls --…

【Docker】Linux中Docker数据管理的数据卷及挂载

目录 一、数据管理 1. 讲述 2. 应用场景 二、数据卷的应用 1. 命令 2. tomcat镜像 3. 挂载数据卷 4. 项目部署在数据卷 三、目录挂载 四、完善Tomcat配置 每篇一获 一、数据管理 1. 讲述 Docker 的数据管理主要涉及到两个方面&#xff1a;数据卷&#xff08;Volume…

[linux]编译一个ko文件并运行

一、需求 有一段代码需要在运行时加载注入内核中&#xff0c;当用户层需要访问时可以提供内核态环境去运行。 二、c代码构建 // #include <errno.h> // #include <string.h> // #include <stdio.h> // #include <fcntl.h> // #include <stdlib.h…

Docker数据卷与拦截与目录拦截

目录 高级容器挂载技术深度解析引言数据卷挂载原理解析应用场景使用介绍 目录挂载原理解析应用场景使用介绍 总结 高级容器挂载技术深度解析 引言 容器技术的快速发展使得容器挂载技术变得愈发重要。在容器化应用中&#xff0c;数据卷挂载和目录挂载是两种常见的挂载方式&…

SpringMVC 学习博客记录

文章目录 Servlet请求转发和请求包含RequestDispatcher HandlerInterceptor组件实际运用场景 HandlerMapping&RequestMappingInfo(HandlerMapping)HandlerExecutionChainHandlerAdapter源码学习知识点博客记录 Servlet请求转发和请求包含 RequestDispatcher Request#getR…

测试八年|对业务测试人员的一些思考

自从事测试工作八年多以来&#xff0c;经历过三个部门多条业务线&#xff0c;也经历过测试转型再回到测试&#xff0c;在此过程中对测试工作和角色的认知也逐步有些思考&#xff0c;想把这些思考分享给大家&#xff0c;希望为业务测试同学提供一些有价值的思路。 一、质量保障…

U盘启动安装win11遇到缺少计算机所需的介质驱动程序问题

一、使用U盘制作启动盘遇到问题 下载了windows原版镜像&#xff0c;验证了md5&#xff0c;确保文件没有损坏。使用ultroiso制作u盘启动盘&#xff0c;开始安装后出现下图的报错&#xff1a; 在网上搜索解决方案&#xff0c;主要有以下几种&#xff1a; 安装的时候&#xff0c…

POI:对Excel的基本写操作 整理1

首先导入相关依赖 <!-- https://mvnrepository.com/artifact/org.apache.poi/poi --><!--xls(03)--><dependency><groupId>org.apache.poi</groupId><artifactId>poi</artifactId><version>5.2.2</version></depend…

SpringBoot中 如何优雅的 重试调用 第三方API?

引言 在实际的应用中&#xff0c;我们经常需要调用第三方API来获取数据或执行某些操作。然而&#xff0c;由于网络不稳定、第三方服务异常等原因&#xff0c;API调用可能会失败。为了提高系统的稳定性和可靠性&#xff0c;我们通常会考虑实现重试机制。 本文将深入探讨如何在…

Defi安全--Zunami Protocol攻击事件分析

其它相关内容可见个人主页 1 Zunami攻击事件相关信息 2023.8.13发生在Ethereum上发生的攻击&#xff0c;存在两个攻击交易&#xff0c;具体信息如下&#xff1a; 攻击合约地址&#xff1a;Contract Address 攻击合约 攻击者地址&#xff1a;Zunami Protocol Exploiter 攻击…