助力智能密集人群检测计数,基于YOLOv8全系列模型【n/s/m/l/x】开发构建通用场景下密集人群检测计数识别系统

在一些人流量比较大的场合,或者是一些特殊时刻、时段、节假日等特殊时期下,密切关注当前系统所承载的人流量是十分必要的,对于超出系统负荷容量的情况做到及时预警对于管理团队来说是保障人员安全的重要手段,本文的主要目的是想要基于通用的数据开发构建用于通用场景下的人群检测计数系统。

首先看下实例效果:
 

简单看下实例数据情况:

训练数据配置文件如下所示:

# Dataset
path: ./dataset
train:
  - /data/dataset/images/train
val:
  - /data/dataset/images/test
test:
  - /data/dataset/images/test
 
 
# Classes
names:
  0: person

如果对YOLOv8开发构建自己的目标检测项目有疑问的可以看下面的文章,如下所示:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例】》

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

官方项目地址在这里,如下所示:

目前已经收获超过1.7w的star量了。官方提供的预训练模型如下所示:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64037.380.40.993.28.7
YOLOv8s64044.9128.41.2011.228.6
YOLOv8m64050.2234.71.8325.978.9
YOLOv8l64052.9375.22.3943.7165.2
YOLOv8x64053.9479.13.5368.2257.8

另外一套预训练模型如下:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64018.4142.41.213.510.5
YOLOv8s64027.7183.11.4011.429.7
YOLOv8m64033.6408.52.2626.280.6
YOLOv8l64034.9596.92.4344.1167.4
YOLOv8x64036.3860.63.5668.7260.6

是基于Open Image V7数据集构建的,可以根据自己的需求进行选择使用即可。

YOLOv8的定位不仅仅是目标检测,而是性能强大全面的工具库,故而在任务类型上同时支持:姿态估计、检测、分类、分割、跟踪多种类型,可以根据自己的需要进行选择使用,这里就不再详细展开了。

简单的实例实现如下所示:

from ultralytics import YOLO
 
# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)

这里我们依次选择n、s、m、l和x五款不同参数量级的模型来进行开发。

这里给出yolov8的模型文件如下:

# Parameters
nc: 1   # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
 
  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

囊括了五款不同参数量级的模型。在训练结算保持相同的参数设置,等待训练完成后我们横向对比可视化来整体对比分析。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置

综合对比来看:在密集人群检测计数场景下n系列模型的表现最差,s系列的模型由于n系列的模型但是效果也是不尽人意,m、l和x三个系列的模型没有拉开明显的差距,x系列模型最优,综合考虑参数推理速度最终选择使用m系列的模型作为线上推理模型。

接下来我们详细看下m系列模型的结果:

【PR】

【Batch实例】

【训练可视化】

感兴趣的话也都可以试试看!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/312166.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

springboot基于Web的社区医院管理服务系统源码和论文

在Internet高速发展的今天,我们生活的各个领域都涉及到计算机的应用,其中包括社区医院管理服务系统的网络应用,在外国线上管理系统已经是很普遍的方式,不过国内的管理系统可能还处于起步阶段。社区医院管理服务系统具有社区医院信…

node.js笔记(1)

node,js是一个基于chrome v8引擎的javascript运行环境。 浏览器是javascript的前端运行环境。 node.js是javascript的后端运行环境。 node.js中无法调用浏览器中内置的DOM和BOM等API。 node.js作为一个javascript的运行环境,仅仅提供了基础的功能和API。 浏览器中…

线索系统性能优化实践

引言 在京东家居事业部,线索CRM系统扮演着至关重要的角色,它作为构建家居场景核心解决方案集的首要环节,肩负着获客和拓展业务的重要使命。然而,随着业务的不断扩张和市场需求的日益增长,系统原有的架构开始显露出诸多…

Github搭建图床 github搭建静态资源库 免费CDN加速 github搭建图床使用 jsdelivr CDN免费加速访问

Github搭建图床 github搭建静态资源库 免费CDN加速 github搭建图床使用 jsdelivr CDN免费加速访问 前言1、创建仓库2、开启 gh-pages页面功能3、访问测试 前言 写博客文章时,图片的上传和存放是一个问题,使用小众第三方图床,怕不稳定和倒闭&…

RTL编码(1)——概述

一、RTL级描述 RTL(Register Transfer Level)级:寄存器+组合逻辑,其功能与时序用Verilog HDL(以下简称Verilog)或VHDL代码描述。 RTL描述包含了同步数字电路最重要的三个特征:组合逻…

24-1-9 bilibilic++音视频

下午两点面试,面试官迟到了一会,面试官人很好,整体面试经历很不错,但是我人太紧张了,基础知识掌握的深度不够,没有深挖, 是做音视频的底层相关的, 实习要求只要每天打卡够九个小时就…

FineBI实战项目一(15):订单销售总额分析开发

点击新建组件,创建订单销售总额组件。 选择自定义图表,选择文本,拖拽要分析的字段到文本中。 进入仪表板,拖拽刚刚的组件进入仪表板,然后在再编辑标题。 效果如下

MySQL-外键等信息

38. 基础-多表查询-概述_哔哩哔哩_bilibili 1、流程函数 2、约束字段 删除外键 : alter table emp2 drop foreign key 外键名 //外键可以保持数据的一致性和完整性,外键的话,就是类似一个主表,一个从表,从表的其中一…

uniapp微信小程序投票系统实战 (SpringBoot2+vue3.2+element plus ) -投票帖子详情实现

锋哥原创的uniapp微信小程序投票系统实战: uniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )_哔哩哔哩_bilibiliuniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )共计21条视频…

js中的class类

目录 class构造函数方法原型方法访问器方法静态方法 继承super minxin关于多态 class 在ES6中之前如果我们想实现类只能通过原型链和构造函数的形式,不仅难以理解步骤也十分繁琐 在ES6中推出了class关键字,它可以在js中定一个类,通过new来实…

Flink异步IO

本文讲解 Flink 用于访问外部数据存储的异步 I/O API。对于不熟悉异步或者事件驱动编程的用户,建议先储备一些关于 Future 和事件驱动编程的知识。 本文代码gitee地址: https://gitee.com/ddxygq/BigDataTechnical/blob/main/Flink/src/main/java/operator/AsyncIODemo.java …

ceph、gluster、longhorn选型对比

Ceph Ceph是一个分布式的存储系统,可以在统一的系统中提供唯一的对象、块和文件存储。 名词解释: RADOS: 由自我修复、自我管理、智能存储节点组成的可靠、自主、分布式对象存储LIBRADOS: 一个允许应用程序直接访问 RADO 的库&…

虚幻UE 材质-进阶边界混合之运行时虚拟纹理

之前在学习空山新雨后时对于边缘虚化过渡处理有很多技术 今天又要介绍一个边缘过渡的方法:运行时虚拟纹理 文章目录 前言一、运行时虚拟纹理二、使用步骤总结 前言 边缘过渡柔和的方式我们之前介绍了很多,但是效果也不是最好的。 像素偏移PDO和我们今天…

查准率与查全率在自然语言处理中的核心概念与联系、核心概念和实践应用,如何使用朴素贝叶斯、SVM 和深度学习实现查准率和查全率的计算?

查准率与查全率在自然语言处理中的核心概念与联系、核心概念和实践应用,如何使用朴素贝叶斯、SVM 和深度学习实现查准率和查全率的计算? 人工智能核心技术有:1. 深度学习;2.计算机视觉;3.自然语言处理;4.数据挖掘。其中,深度学习就是使用算法分析数据,从中学习并自动归…

jsonvue-mobile 联动方式说明。

目录 jsonvue-mobile的联动类型分为两种 一种是命令式的: 另一种是响应式的: 联动场景 场景一:某一个字段的值变化时,同步修改另一个字段的值 命令式: 响应式: 场景一演示效果GIF 场景二&#xff1…

对外贸易数据平台解析_外贸三大支撑力_箱讯科技

添加图片注释,不超过 140 字(可选) 三大支撑力支撑我国外贸持续回暖 海关总署近日发布数据显示,今年前11个月,我国进出口总值37.96万亿元,与去年同期持平。进入四季度,我国外贸发展的积极因素…

k8s--动态pvc和pv

前情回顾 存储卷: emptyDir 容器内部,随着pod销毁,emptyDir也会消失 不能做数据持久化 hostPath:持久化存储数据 可以和节点上目录做挂载。pod被销毁了数据还在 NFS:一台机器,提供pod内容器所有的挂载点…

css设置内嵌样式阴影

.box{box-shadow: inset 0 0 10px #f1e227, inset 0 0 10px #b6b70f, inset 0 0 10px #879017, inset 0 0 10px #485b22, inset 0 0 10px #0a272e;/* 这是一个CSS的box-shadow属性的值,用于创建一个元素的内部阴影效果。具体的意思是在元素的边界内部添加五个不同颜…

Java项目:119SpringBoot废品回收系统

博主主页:Java旅途 简介:分享计算机知识、学习路线、系统源码及教程 文末获取源码 一、项目介绍 废品回收系统是由SpringBootMybatis开发的,分为前台和后台,前台进行下单,后台处理。 后台功能如下: 类型…

源码搭建教学:连锁餐饮APP开发实战

连锁餐饮APP,对于很多从事餐饮行业的人来说不会陌生,同样这个项目本身就有着很高的热度。今天,小编将深入为大家讲述一下此系统的前后端开发、数据库设计、用户界面设计等方面,让您深入了解全栈开发的方方面面。 一、项目准备与规…