LORA的基本原理

本文将介绍如下内容:

  • 什么是Lora
  • 高效微调的基本原理
  • LORA的实现方式
  • LORA为何有效?

一、什么是LoRA

LoRA 通常是指低秩分解(Low-Rank Decomposition)算法,是一种低资源微调大模型方法,论文如下: LoRA: Low-Rank Adaptation of Large Language Models。
使用LORA,训练参数仅为整体参数的万分之一、GPU显存使用量减少2/3且不会引入额外的推理耗时。

二、高效微调的基本原理

以语言模型为例,在微调过程中模型加载预训练参数 Φ 0 \Phi_0 Φ0进行初始化,并通过最大化条件语言模型概率进行参数更新 Φ 0 \Phi_0 Φ0+ Δ Φ \Delta\Phi ΔΦ,即:
在这里插入图片描述

这种微调方式主要的缺点是我们学习到的参数增量 Δ Φ \Delta\Phi ΔΦ的维度和预训练参数 Φ 0 \Phi_0 Φ0是一致的,这种微调方式所需的资源很多,一般被称为full fine-tuing
研究者认为能用更少的参数表示上述要学习的参数增量 Δ Φ \Delta\Phi ΔΦ= Δ Φ ( Θ ) \Delta\Phi(\Theta ) ΔΦ(Θ),其中 ∣ Θ ∣ |\Theta| ∣Θ∣<< ∣ Φ 0 ∣ |\Phi_0| Φ0,原先寻找 Δ Φ \Delta\Phi ΔΦ的优化目标变为寻找 Θ \Theta Θ
在这里插入图片描述
这种仅微调一部分参数的方法称为高效微调。针对高效微调,研究者有很多的实现方式(如Adapter、prefixtuing等)。本文作者旨在使用一个低秩矩阵来编码 Δ Φ \Delta\Phi ΔΦ相比于其他方法,LORA不会增加推理耗时且更便于优化。

三、LORA的实现方式

1、Instrisic Dimension

我们先思考两个问题:为何用数千的样本就能将一个数十亿参数的模型微调得比较好?为何大模型表现出很好的few-shot能力?
Aghajanyan的研究表明:预训练模型拥有极小的内在维度(instrisic dimension),即存在一个极低维度的参数,微调它和在全参数空间中微调能起到相同的效果。
同时Aghajanyan发现在预训练后,越大的模型有越小的内在维度,这也解释了为何大模型都拥有很好的few-shot能力。

2、LORA

在这里插入图片描述
受instrisic dimension工作的启发,作者认为参数更新过程中也存在一个‘内在秩’。对于预训练权重矩阵 W 0 W_0 W0 ∈ \in R d ∗ k \mathbf{R^{d*k}} Rdk,我们可以用一个低秩分解来表示参数更新
Δ W \Delta W ΔW,即:
在这里插入图片描述
训练过程中冻结参数 W 0 W_0 W0,仅训练A和B中的参数。如上图所示,对于 h = W 0 x h=W_0 x h=W0x,前向传播过程变为:

在这里插入图片描述

四、LORA为何有效?

通过大量的对比实验,作者证明了LORA的有效性,但是作者希望进一步解释这种从下游任务中学到的低秩适应(low-rank adaptation)的特性。为此,作者提出了三个问题:

1、LORA应该作用于Transformer的哪个参数矩阵?

在这里插入图片描述
从上图我们可以看到:

  • 将所有微调参数都放到attention的某一个参数矩阵的效果并不好,将可微调参数平均分配到 W q W_q Wq W k W_k Wk的效果最好。
  • 即使是秩仅取4也能在 Δ W \Delta W ΔW中获得足够的信息。

因此在实际操作中,应当将可微调参数分配到多种类型权重矩阵中,而不应该用更大的秩单独微调某种类型的权重矩阵。

2、LORA最优的秩r是多少?

在这里插入图片描述
从上述实验结论我可以看到,在秩小到1或者2的时候,LORA的仍有不错的效果。因此作者假设:更新参数矩阵 Δ W \Delta W ΔW可能拥有极小的‘内在秩’。为求证此假设,作者需要计算不同秩对应的子空间之间的重叠程度,如下:
对于 r = 8 r=8 r=8 r = 64 r=64 r=64 两个秩,首先进行奇异值分解得到两个右奇异矩阵 U A r = 8 U_{Ar=8} UAr=8 U A r = 64 U_{Ar=64} UAr=64。作者希望得到: U A r = 8 U_{Ar=8} UAr=8 的top-i奇异向量有多少被包含在 U A r = 64 U_{Ar=64} UAr=64的top-j个向量中。可用格拉斯曼距离来表示这种子空间之间的相似关系:
在这里插入图片描述
在这里插入图片描述
从上图可以看出 r = 8 r=8 r=8 r = 64 r=64 r=64中的top奇异向量重叠得最多(颜色越小表示相似程度越高),也就是说top奇异向量的作用最大,其他的奇异可能会引入更多的噪声。这证明了更新参数矩阵
Δ W \Delta W ΔW存在极小的‘内在秩’。

3、参数增量 Δ W \Delta W ΔW W W W的关系?

为揭示微调过程的内在原理,作者进行了如下实验:
在这里插入图片描述
从上图的对比结果,作者发现三个现象:

  • 相比于随机矩阵, Δ W \Delta W ΔW W W W有强关联。 从表中的 0.32 > > 0.02 0.32>>0.02 0.32>>0.02可以看出。
  • Δ W \Delta W ΔW仅放大了 W W W中任务相关的特征, 并未放大头部特征。我们知道F范数的平方等于奇异值和的平方,因此从表中的 0.32 < < 21.67 0.32<<21.67 0.32<<21.67可以看出 Δ W \Delta W ΔW W W W的头部奇异向量并无关联。
  • r等于4时, Δ W \Delta W ΔW的放大系数已经很大了。 计算 6.91 / 0.32 ≈ 21.5 6.91/0.32 \approx21.5 6.91/0.3221.5可知 Δ W \Delta W ΔW能将 W W W 中相关的特征向量放大21.5倍。

因此我们可以得到结论:在训练过程中,低秩的适应矩阵 Δ W \Delta W ΔW仅仅放大了对下游任务有用的特征,而不是预训练模型中的主要特征。

参考:

  • LORA微调系列(一):LORA和它的基本原理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/311221.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深入理解计算机系统(1):开始

计算机系统是由硬件和系统软件组成的&#xff0c;它们共同工作来运行应用程序。虽然系统的具体实现方式随着时间不断变化&#xff0c;但是系统内在的概念却没有改变。所有计算机系统都有相似的硬件和软件组件&#xff0c;它们又执行着相似的功能。 计算机系统 信息就是位上下…

C++I/O流——(1)I/O流的概念

归纳编程学习的感悟&#xff0c; 记录奋斗路上的点滴&#xff0c; 希望能帮到一样刻苦的你&#xff01; 如有不足欢迎指正&#xff01; 共同学习交流&#xff01; &#x1f30e;欢迎各位→点赞 &#x1f44d; 收藏⭐ 留言​&#x1f4dd; 勤奋&#xff0c;机会&#xff0c;乐观…

Nginx配置反向代理实例二

Mac 安装Nginx教程 Nginx配置反向代理实例一 提醒一下&#xff1a;下面实例讲解是在Mac系统演示的&#xff1b; 反向代理实例二实现的效果 使用nginx 反向代理&#xff0c;根据访问的地址跳转到不同端口的服务中 nginx 监听端口为81&#xff1b; 访问地址1&#xff1a;http:/…

QTday4作业

思维导图: widget.h: #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTime> #include <QTimerEvent> #include <QPushButton> #include <QTextToSpeech> #include <QDebug>namespace Ui { class Widget; }class Widget…

实现稳定的联合显著性检测和联合目标分割

1 Title Toward Stable Co-Saliency Detection and Object Co-Segmentation(Bo Li; Lv Tang; Senyun Kuang; Mofei Song; Shouhong Ding)【IEEE Transactions on Image Processing 2022】 2 Conclusion This paper present a novel model for simultaneous stable co-saliency…

数据分析讲课笔记01:数据分析概述

文章目录 零、学习目标一、本次课程概述二、数据分析的背景&#xff08;一&#xff09;进入大数据时代&#xff08;二&#xff09;数据分析的作用 三、什么是数据分析&#xff08;一&#xff09;数据分析的概念&#xff08;二&#xff09;数据分析的分类1、描述性数据分析2、探…

公网环境使用移动端设备+cpolar远程访问本地群晖nas上的影视资源

文章目录 1.使用环境要求&#xff1a;2.下载群晖videostation&#xff1a;3.公网访问本地群晖videostation中的电影&#xff1a;4.公网条件下使用电脑浏览器访问本地群晖video station5.公网条件下使用移动端&#xff08;搭载安卓&#xff0c;ios&#xff0c;ipados等系统的设备…

WiFi7无线路由器TL-7DR6560简单开箱测评

TPLINK/普联 TL-7DR6560易展Turbo版 BE6500 双频WiFi7无线路由器简单开箱测评&#xff0c;4个2.5G网口&#xff0c;6颗独立FEM&#xff0c;双频6流。 TP-LINK XDR6088 WiFi6路由器 简单开箱评测&#xff1a;https://blog.zeruns.tech/archives/731.html 分享一下我家网络机柜…

Macos下修改Python版本

MacOS下修改Python版本 安装 查看本机已安装的Python版本&#xff1a;where python3 ~ where python3 /usr/bin/python3 /usr/local/bin/python3 /Library/Frameworks/Python.framework/Versions/3.12/bin/python3如果没有你想要的版本&#xff0c;去python官网下载安装包。…

Day4Qt

1.头文件: #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTime>//时间类 #include <QTimer>//时间事件类 #include <QTimerEvent>//定时器类 #include <QTextToSpeech> namespace Ui { class Widget; }class Widget : publi…

esp32-cam使用SD卡/web端保存拍摄图片到本地

目录 一、esp32-cam运行esp-who的人脸识别报错 二、挂载sd卡到esp32-cam&#xff0c;并将拍摄的图片保存到sd卡三、通过web示例对拍摄的图片进行保存 保存拍摄图片主要是想加在人脸识别这个项目中&#xff0c;所以先把人脸识别示例跑通&#xff0c;然后在把挂在sd卡的部分放进来…

7.云原生之jenkins集成SonarQube

1. 私有云实战之基础环境搭建 2. 云原生实战之kubesphere搭建 3.云原生之kubesphere运维 4. 云原生之kubesphere基础服务搭建 5.云原生安全之kubesphere应用网关配置域名TLS证书 6.云原生之DevOps和CICD 7.云原生之jenkins集成SonarQube 8.云原生存储之Ceph集群 文章目录 搭建 …

美国证券交易委员会 X 账户被黑,引发比特币市场震荡

Bleeping Computer 网站消息&#xff0c;威胁攻击者成功“占领”了美国证券交易委员会的 X 账户&#xff0c;并发布一条关于批准比特币 ETF 在证券交易所上市的虚假公告。 帖子原文&#xff1a;今天&#xff0c;美国证券交易委员会批准比特币 ETF 在注册的国家证券交易所上市&a…

Blazor快速开发框架Known-V2.0.0

Known2.0 Known是基于Blazor的企业级快速开发框架&#xff0c;低代码&#xff0c;跨平台&#xff0c;开箱即用&#xff0c;一处代码&#xff0c;多处运行。 官网&#xff1a;http://known.pumantech.comGitee&#xff1a; https://gitee.com/known/KnownGithub&#xff1a;ht…

嵌入式培训机构四个月实训课程笔记(完整版)-Linux系统编程第十天-Linux下mplayer音乐播放器练习题(物联技术666)

更多配套资料CSDN地址:点赞+关注,功德无量。更多配套资料,欢迎私信。 物联技术666_嵌入式C语言开发,嵌入式硬件,嵌入式培训笔记-CSDN博客物联技术666擅长嵌入式C语言开发,嵌入式硬件,嵌入式培训笔记,等方面的知识,物联技术666关注机器学习,arm开发,物联网,嵌入式硬件,单片机…

实现接口自动化测试

最近接到一个接口自动化测试的case&#xff0c;并展开了一些调研工作&#xff0c;最后发现&#xff0c;使用pytest测试框架并以数据驱动的方式执行测试用例&#xff0c;可以很好的实现自动化测试。这种方式最大的优点在于后续进行用例维护的时候对已有的测试脚本影响很小。当然…

CAN201 计网概念收集

Lecture 1 the theoretical basis for networking Network edge and core 地理覆盖范围&#xff1a;广WAN&#xff0c;城MAN&#xff0c;局LAN&#xff0c;个PAN 交换方式&#xff0c;电路&#xff0c;报文&#xff0c;分组 电路交换vs报文vs分组 Network performance pr…

[AutoSar]基础部分 RTE 07 VFB虚拟功能总线

目录 关键词平台说明一、VFB1.1VFB是什么1.1VFB的好处1.2VFB的坏处 二、VFB在ECU内部的描述2.1Components2.2 Port-Interfaces2.3 Port2.4 Compositions 关键词 嵌入式、C语言、autosar、VFB 平台说明 项目ValueOSautosar OSautosar厂商vector芯片厂商TI编程语言C&#xff0…

浅析NVMe key per IO加密技术-3

三、Key per IO行业规范支持情况 Key Per I/O功能在行业规范中的支持情况&#xff1a; NVMe标准已经批准并采纳了NVMe TP4055提案&#xff0c;明确支持并定义了如何使用每个I/O操作独立的加密密钥技术。这意味着NVMe设备可以实现对每一个数据传输请求进行单独加密&#xff0c;…

降压恒压 耐压DC60V芯片,SL3037B替代HT7463A、兼容替代HT7463B

在当今的电子设备中&#xff0c;电源管理芯片扮演着至关重要的角色。它们负责为设备提供稳定的电压&#xff0c;确保设备的正常运行。然而&#xff0c;随着技术的不断发展&#xff0c;一些传统的电源管理芯片已经无法满足现代设备的需要。此时&#xff0c;寻找一种能够替代传统…