EI级 | Matlab实现VMD-TCN-LSTM变分模态分解结合时间卷积长短期记忆神经网络多变量光伏功率时间序列预测

EI级 | Matlab实现VMD-TCN-LSTM变分模态分解结合时间卷积长短期记忆神经网络多变量光伏功率时间序列预测

目录

    • EI级 | Matlab实现VMD-TCN-LSTM变分模态分解结合时间卷积长短期记忆神经网络多变量光伏功率时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.【EI级】Matlab实现VMD-TCN-LSTM多变量时间序列预测(光伏功率数据);
Matlab实现VMD-TCN-LSTM变分模态分解结合时间卷积长短期记忆神经网络多变量光伏功率时间序列预测;
VMD对光伏功率分解,TCN-LSTM模型对分量分别建模预测后相加
2.运行环境为Matlab2021a及以上;
3.数据集为excel(光伏功率数据),输入多个特征,输出单个变量,多变量光伏功率时间序列预测,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、RMSE、MAE、ME等多指标评价;

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

参考文献(非复现)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现VMD-TCN-LSTM变分模态分解结合时间卷积长短期记忆神经网络多变量光伏功率时间序列预测获取。

[data]=process(data1,n,hour,BaoLiu_num,JianGe_num);
X    = data(:,end)';
%% --------- some sample parameters forVMD:对于VMD样品参数进行设置---------------
alpha = 2000;       % moderate bandwidth constraint:适度的带宽约束/惩罚因子
tau = 0;            % noise-tolerance (no strict fidelity enforcement):噪声容限(没有严格的保真度执行)
K = 3;              % modes:分解的模态数,可以自行设置,这里以8为例。
DC = 0;             % no DC part imposed:无直流部分
init = 1;           % initialize omegas uniformly  :omegas的均匀初始化
tol = 1e-7;  
%% --------------- Run actual VMD code:数据进行vmd分解---------------------------
[u, u_hat, omega] = VMD(X, alpha, tau, K, DC, init, tol); %其中u为分解得到的IMF分量
figure;
imfn=u;
n=size(imfn,1); 
subplot(n+1,1,1);  
plot(X); 
ylabel('原始功率','fontsize',12,'fontname','宋体');
title('VMD分解');

for n1=1:n
    subplot(n+1,1,n1+1);
    plot(u(n1,:));%输出IMF分量,a(:,n)则表示矩阵a的第n列元素,u(n1,:)表示矩阵u的n1行元素
    ylabel(['IMF' int2str(n1)]);%int2str(i)是将数值i四舍五入后转变成字符,y轴命名
end
 xlabel('样本','fontsize',12,'fontname','宋体');
for i_vmd=1:K
data(:,end) = u(i_vmd,:)';

%% 输入天数
Tian=100;
weather=6;
his_time=4;
his_day=2;
time=BaoLiu_num;
shurugeshu = weather+his_time+his_day;%输入特征个数
lag = 1:time*his_day;

[input_train,input_valid,input_test,output_train,output_valid,output_test]=data_set(data,Tian,weather,time);
%% 
[~,bb]=mapminmax([input_train input_valid input_test]);
[cc,dd]=mapminmax([output_train output_valid output_test]);
%%
% 训练集
[tr_inputn,tr_outputn]=train_set(input_train,output_train,bb,dd,lag,his_time,his_day,time);
Xxun{1} = tr_inputn;  %训练集输入
Yxun{1} = tr_outputn; % 训练集输出
%%
% TCN参数
numChannel = 10;  % 通道数量
KerSize = 3;  % 卷积核大小
dropoutFactor = 0.025;  % droupt
numChan = 4;  % TCN残差块数

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/309802.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

CSS3实现轮播效果

在我们不使用JS的情况下&#xff0c;是否也可以实现轮播功能呢&#xff1f; 答应是可以的 上代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>轮播</title><style>.boss…

⭐Unity 将电脑打开的窗口画面显示在程序中

1.效果&#xff1a; 下载资源包地址&#xff1a; Unity中获取桌面窗口 2.下载uWindowCapturev1.1.2.unitypackage 放入Unity工程 3.打开Single Window场景&#xff0c;将组件UwcWindowTexture的PartialWindowTitle进行修改&#xff0c;我以腾讯会议为例 感谢大家的观看&#xf…

QT开发 2024最新版本优雅的使用vscode开发QT

▬▬▬▬▬▶VS开发QT◀▬▬▬▬▬ &#x1f384;先看效果 &#x1f384;编辑环境变量 如图添加环境变量&#xff01;&#xff01;&#xff01; 东西全在QT的安装目录&#xff01;&#xff01;&#xff01; 找到的按照我的教程再装一次&#xff01;&#xff01;&#xff01; 点…

如何给AVR16芯片解锁

AVRM16核心板本身集成了强大的芯片自解锁功能模块&#xff0c;当由于熔丝位设置错误&#xff0c;导致芯片锁死&#xff0c;无法正常使用时候&#xff0c;可以利用畅学AVR16核心板上的解锁功能给芯片解锁。 &#xff08;如果芯片没有锁死&#xff0c;可以跳过此步骤&#xff09…

yolov5无人机视频检测与计数系统(创新点和代码)

标题&#xff1a;基于YOLOv5的无人机视频检测与计数系统 摘要&#xff1a; 无人机技术的快速发展和广泛应用给社会带来了巨大的便利&#xff0c;但也带来了一系列的安全隐患。为了实现对无人机的有效管理和监控&#xff0c;本文提出了一种基于YOLOv5的无人机视频检测与计数系…

排序之插入排序

在计算机科学中&#xff0c;排序算法是一种将一组元素按照某种特定顺序排列的方法。插入排序是一种简单且易于理解的排序算法&#xff0c;它的基本思想是将一个记录插入到已经排好序的有序表中&#xff0c;从而得到一个新的、记录数增1的有序表。 基本思想 插入排序的基本思想…

Ubuntu 20.04 Intel RealSense D435i 相机标定教程

下载编译code_utils mkdir -p ~/imu_catkin_ws/src cd ~/imu_catkin_ws/src catkin_init_workspace source ~/imu_catkin_ws/devel/setup.bash git clone https://github.com/gaowenliang/code_utils.git cd .. catkin_make报错&#xff1a;sumpixel_test.cpp:2:10: fatal err…

计算机网络 物理层

文章目录 物理层物理层的基本概念数据通信的基础知识数据通信系统的模型有关信道的几个基本概念信道的极限容量 物理层下面的传输媒体导引型传输媒体非引导型传输媒体 信道复用技术波分复用码的复用 宽带接入技术ADSL 技术光纤同轴混合网 (HFC 网&#xff09;FTTx 技术 物理层 …

基于sprinmgboot实习管理系统源码和论文

随着信息化时代的到来&#xff0c;管理系统都趋向于智能化、系统化&#xff0c;实习管理也不例外&#xff0c;但目前国内仍都使用人工管理&#xff0c;市场规模越来越大&#xff0c;同时信息量也越来越庞大&#xff0c;人工管理显然已无法应对时代的变化&#xff0c;而实习管理…

新生儿成长的阳光之钙:补充注意事项指南

引言&#xff1a; 钙是新生儿骨骼发育不可或缺的重要元素&#xff0c;对于宝宝的生长发育起着至关重要的作用。本文将深入探讨钙的功能、补充时机&#xff0c;以及在给新生儿补充钙时应该注意的事项&#xff0c;为小天使们提供最贴心的呵护。 第一部分&#xff1a;钙的重要性与…

【python入门】day21:向文件输出“奋斗成就更好的你”、输出北京的天气预报

向文件输出“奋斗成就更好的你” #向文件输出‘奋斗成就更好的你’ 第一种方式&#xff1a;使用print方式进行输出&#xff08;输出目的地是文件&#xff09; fpopen(e:/text.txt,w)#w只写模式&#xff0c;也可以用a读写模式 print(奋斗成就更好的你,filefp) fp.close() 第二种…

创建EasyCodeMybatisCodeHelperPro模板文件用于将数据库表生成前端json文件

在intellij idea中&#xff0c;通过插件EasyCodeMybatisCodeHelperPro&#xff0c;从现有的模板文件中选择一个复制粘贴&#xff0c;然后稍为修改&#xff0c;即可得到一个合适的模板文件。 现在的前端&#xff0c;越来越像后端。TypeScript替代了JavaScript&#xff0c;引入了…

压缩编码之变换的选择之离散余弦变换(DCT)和离散傅立叶变换(DFT)——数字图像处理

原理 变换的选择是一个关键的考量因素&#xff0c;它决定了数据是如何被压缩的。选择变换时考虑以下几个重要原则&#xff1a; 数据去关联性&#xff1a;变换的目的之一是减少数据中的相关性。例如&#xff0c;在图像压缩中&#xff0c;像素间往往高度相关。通过适当的变换&a…

统计学-R语言-1

文章目录 统计学介绍基本类型数据和变量数据抽样总结 统计学介绍 统计学(statistics)是“数据的科学” 1.是用以收集数据、分析数据和由数据得出结论的一组概念、原则和方法。 2.统计学进行推断的基础是数据(data)。数据不仅仅限于数字&#xff0c;也可能是图表、视频、音频或…

数据结构排序——详解快排及其优化和冒泡排序(c语言实现、附有图片与动图示意)

上次讲了选择排序和堆排序&#xff1a;数据结构排序——选择排序与堆排序 今天就来快排和冒泡 文章目录 1.快排1.1基本介绍1.2不同的分区方法及代码实现1.2.1Hoare版1.2.2挖坑版1.2.3 前后指针版 1.3快排的优化1.3.1三数取中选key1.3.2递归到小的子区间时&#xff0c;可以考虑…

09、Kafka ------ 通过修改保存时间来删除消息(retention.ms 配置)

目录 通过修改保存时间来删除消息★ 删除指定主题的消息演示1、修改kafka检查过期消息的时间间隔2、修改主题下消息的过期时间3、查看修改是否生效4、先查看下主题下有没有消息5、添加几条消息看效果6、查看消息是否被删除 ★ 恢复主题的retention.ms配置1、先查看没修改前的te…

NLP(十八):LLM 的推理优化技术纵览

原文&#xff1a;NLP&#xff08;十八&#xff09;&#xff1a;LLM 的推理优化技术纵览 - 知乎 目录 收起 一、子图融合&#xff08;subgraph fusion&#xff09; 1.1 FasterTransformer by NVIDIA 1.2 DeepSpeed Inference by Microsoft 1.3 MLC LLM by TVM 二、模型压…

可视可交互!在全志H618上用OpenCV读取图像显示到PyQt5窗口上

OpenCV能够处理图像、视频、深度图像等各种类型的视觉数据&#xff0c;在某些情况下&#xff0c;尽管OpenCV可以显示窗口&#xff0c;但PyQt5可能更适合用于创建复杂的交互式应用程序&#xff0c;而自带GPU的H618就成为了这些图像显示的最佳载体。 这里分享一个代码&#xff0…

实战(CVE-2023-42442)JumpServer未授权访问漏洞

声明&#xff1a; 该文章仅供网络安全领域的学习使用&#xff0c;请勿利用文章内的相关技术从事任何非法行为。 测试资产为日本IP&#xff0c;因此未做任何打码处理&#xff0c;我们只进行poc&#xff08;漏洞验证&#xff09;&#xff0c;不进行exp&#xff08;漏洞利用&#…

使用numpy处理图片——模糊处理

大纲 高斯模糊方框模糊其他算法median_filtermaximum_filterminimum_filterpercentile_filterrank_filtergaussian_laplacecorrelatemorphological_laplacewhite_tophatmorphological_gradientblack_tophat 在《使用numpy处理图片——滤镜》一文中&#xff0c;我们尝试了去掉一…