[python]使用pyqt5搭建yolov8 竹签计数一次性筷子计数系统

【官方框架地址】

github地址:https://github.com/ultralytics/ultralytics
【算法介绍】

Yolov8是一种先进的深度学习算法,用于目标检测任务,特别是针对图像中物体的实时检测。它是Yolov3和Yolov4之后的又一重要迭代,带来了诸多改进和新特性。本文将详细介绍Yolov8算法的原理、特点、实现细节以及与其他目标检测算法的比较。

一、Yolov8算法原理

Yolov8采用了一种称为"You Only Look Once"(YOLO)的实时目标检测方法。与传统的目标检测方法不同,YOLO将目标检测视为一个回归问题,将图像划分为网格,每个网格预测固定数量的边界框,并识别其中存在的物体。Yolov8在YOLO系列算法的基础上,引入了新的技术来提高准确性和效率。

二、Yolov8特点

高效性:Yolov8采用了轻量级的网络结构,降低了计算复杂度,实现了高效的实时目标检测。
高精度:通过引入新的损失函数和训练技巧,Yolov8在各种数据集上实现了高精度的目标检测。
多尺度特征融合:Yolov8采用了多尺度特征融合策略,提高了对不同大小目标的检测能力。
上下文信息利用:Yolov8利用了上下文信息来提高检测性能,使得模型能够更好地理解图像内容。
强大的锚框设计:Yolov8采用了强大的锚框设计,提高了预测边界框的准确性。

三、Yolov8实现细节

网络结构:Yolov8采用了轻量级的网络结构,包括卷积层、池化层和上采样层等。这种网络结构能够快速处理输入图像,并生成物体的边界框和类别信息。
损失函数:Yolov8采用了新的损失函数,包括坐标损失、置信度损失和类别损失等。这些损失函数共同作用,使得模型能够学习到更准确的边界框位置和类别信息。
多尺度特征融合:为了提高对不同大小目标的检测能力,Yolov8采用了多尺度特征融合策略。通过在不同尺度的特征图上进行预测,模型能够更好地处理不同大小的物体。
训练技巧:为了提高模型的训练效率和准确性,Yolov8采用了一系列训练技巧,包括数据增强、使用混合精度训练和使用标签平滑等。这些技巧有助于提高模型的泛化能力。
锚框设计:Yolov8采用了强大的锚框设计,根据不同的场景和任务需求,设计了多种不同大小的锚框。这些锚框能够帮助模型更好地预测物体的边界框位置。

四、与其他目标检测算法的比较

与传统的目标检测算法(如Faster R-CNN和SSD)相比,Yolov8具有更高的实时性和准确性。与YOLO系列的其他版本(如YOLOv3和YOLOv4)相比,Yolov8在准确性和效率上均有所提升。此外,与基于Transformer的目标检测算法(如DETR和Sparse Transformer)相比,Yolov8具有更快的速度和更高的准确性。

总之,Yolov8是一种高效、准确的目标检测算法,具有广泛的应用前景。它的出现为实时目标检测任务提供了新的解决方案,推动了相关领域的发展。

【效果展示】


【实现部分代码】

    def start_camera(self, camera_index=0):
        self.signal.emit('正在检测摄像头中...','camera')
        cap = cv2.VideoCapture(camera_index)
        self.camera_open = True
        while self.camera_open:
            ret, frame = cap.read()
            if not ret:
                self.action_2.setText('打开摄像头')
                self.camera_open = False
                self.signal.emit('摄像头检测已停止!', 'camera')
                break
            result_lists = self.detector.inference_image(frame, False, self.dsb_conf.value(), self.dsb_iou.value())
            frame = self.detector.draw_image(result_lists, frame)
            res = self.get_result_str(result_lists)
            self.signal.emit(res, 'res')
            frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
            img = QImage(frame.data, frame.shape[1], frame.shape[0], QImage.Format_RGB888)
            self.picture.setPixmap(QPixmap.fromImage(img))
            time.sleep(0.001)
        cap.release()
        self.action_2.setText('打开摄像头')
        self.camera_open = False
        self.signal.emit('摄像头检测已停止!', 'camera')
        self.picture.setPixmap(QPixmap(""))

【模型数据集】

模型采用yolov8n模型,数据集为210张筷子计数数据集,数据集详情介绍如下:

图片数量(jpg文件个数):210
标注数量(xml文件个数):210
标注数量(txt文件个数):210
标注类别数:1
标注类别名称:["label"]
每个类别标注的框数:
label 框数 = 14872
总框数:14872
使用标注工具:labelImg

数据集下载地址:

https://download.csdn.net/download/FL1623863129/88703672

【视频演示】

https://www.bilibili.com/video/BV1A94y1u7CV/?vd_source=989ae2b903ea1b5acebbe2c4c4a635ee
【源码下载】

https://download.csdn.net/download/FL1623863129/88715467
【测试环境】

anaconda3+python3.8

yolov8环境
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/308874.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Ipython 基本使⽤

一、启动 Ipython [root192 ~]# ipython二、特点 ⽀持 Tab 键补全 可以查看函数的源码 ⽅法:??函数名 In [4]: ??open # 按下回⻋即可查看 open 函数的源码,输⼊q 退出源码可以执⾏系统命令 ⽅法: !命令 In [5]: !vim hello.py p…

linux 01 centos镜像下载,服务器,vmware模拟服务器

https://www.bilibili.com/video/BV1pz4y1D73n?p3&vd_source4ba64cb9b5f8c56f1545096dfddf8822 01.使用的版本 国内主要使用的版本是centos 02.centos镜像下载 这里的是centos7 一.阿里云官网地址:https://www.aliyun.com/ 二. -----【文档与社区】 —【…

论文阅读 Attention is all u need - transformer

文章目录 1 摘要1.1 核心 2 模型架构2.1 概览2.2 理解encoder-decoder架构2.2.1 对比seq2seq,RNN2.2.2 我的理解 3. Sublayer3.1 多头注意力 multi-head self-attention3.1.1 缩放点乘注意力 Scaled Dot-Product Attention3.1.2 QKV3.1.3 multi-head3.1.4 masked 3.…

VSCode使用MinGW编译器,配置C/C++环境

目录 一、安装VSCode 二、安装MinGW编译器 1、配置环境变量 2、测试配置是否成功 三、配置VSCode 1、安装所需扩展 2、新建代码存放文件夹 3、添加配置文件 4、配置文件内容 (1)c_cpp_properties.json (2)launch.json …

浅谈WAF——守护网络安全的无形之盾

随着信息化时代的到来,网络已逐渐融入我们日常生活的方方面面。然而,与此同时,网络安全问题却也如影随形。为此,一种名为“Web应用防火墙”的工具应运而生,简称”WAF”。 WAF是什么? WAF(Web …

多模态+SNN个人学习历程和心得

祖传开头 这次想写一个一直深藏心中的研究方向,那就是多模态方向。其实当初在实验室那会儿,最先接触的就是多模态的工作,因此这是我科研之路的起点。只不过,后来经历了一些波折,导致个人没有往这个方向深挖&#xff0…

【读书笔记】学习突围

最近在读一本书《学习突围》,作者是常青,知乎大V。对他的一些回答非常认同,受益匪浅,特此买来纸质书籍细细学习一番! 1.【学习心态】(拖延症、自控、执行力、专注力) 2.【学习方法】&#xff0…

解析c++空指针解引用奔溃

空指针解引用引起程序奔溃是c/c中最常见的稳定性错误之一。 显然并非所有使用空指针的语句都会导致奔溃,那什么情况下使用空指针才会引起程序奔溃呢?有一个判断标准:判断空指针是否会导致访问非法内存的情况,如果会导致访问非法内…

深度学习算法应用实战 | 利用 CLIP 模型进行“零样本图像分类”

文章目录 1. 零样本图像分类简介1.1 什么是零样本图像分类?1.2 通俗一点的解释 2. 模型原理图3. 环境配置4. 代码实战5. Gradio前端页面5.1 什么是 Gradio ? 6 进阶操作7. 总结 1. 零样本图像分类简介 1.1 什么是零样本图像分类? “零样本图像分类”(Zero-shot …

CentOS 6 制作openssl 1.1.1w rpm包 —— 筑梦之路

参考资料: CentOS 7 制作openssl 1.1.1w 版本rpm包 —— 筑梦之路_centos7 openssl 1.1.1 rpm包-CSDN博客 直接上spec文件如下: Name: openssl Version: 1.1.1w Release: 1%{?dist} Summary: Utilities from the general purpose cryptography li…

yolo 分割label格式标注信息图片显示可视化查看

参考: https://github.com/ultralytics/ultralytics/issues/3137 https://blog.csdn.net/weixin_42357472/article/details/135218349?spm=1001.2014.3001.5501 需要把坐标信息在图片上显示 代码 1)只画出了坐标边缘 import cv2 import numpy as np from random impor…

上海雏鸟科技无人机灯光秀跨年表演点亮三国五地夜空

2023年12月31日晚,五场别开生面的无人机灯光秀跨年表演在新加坡圣淘沙、印尼雅加达、中国江苏无锡、浙江衢州、陕西西安等五地同步举行。据悉,这5场表演背后均出自上海的一家无人机企业之手——上海雏鸟科技。 在新加坡圣淘沙西乐索海滩,500架…

【读书笔记】网空态势感知理论与模型(七)

通过网络级对象依赖关系揭示0Day攻击路径 1. 研究动机 0Day攻击是攻击者和防御者之间信息不对称的结果。赛门铁克研究人员认为,典型的0Day攻击平均隐藏312天才会被觉察。 受到SKRM模型启发,Patrol系统以全局视野来调查在某一个路径上的0Day攻击行为。从…

16_线程池

文章目录 完整的线程状态转换图理论层面代码层面 线程池3种线程池线程池的使用 多线程的实现方式三:实现Callable接口单例设计模式(线程安全) 完整的线程状态转换图 理论层面 代码层面 线程池 提高效率 3种线程池 Executors: 线程工具类,…

统一网关 Gateway【微服务】

文章目录 1. 前言2. 搭建网关服务3. 路由断言工厂4. 路由过滤器4.1 普通过滤器4.2 全局过滤器4.3 过滤器执行顺序 5. 跨域问题处理 1. 前言 通过前面的学习我们知道,通过 Feign 就可以向指定的微服务发起 http 请求,完成远程调用。但是这里有一个问题&am…

【JAVA】线程的run()和start()有什么区别?

🍎个人博客:个人主页 🏆个人专栏: JAVA ⛳️ 功不唐捐,玉汝于成 目录 前言 正文 run() 方法: start() 方法: 区别总结: 结语 我的其他博客 前言 多线程编程是Java中一个重要…

生成式 AI 如何重塑软件开发流程和开发工具?

生成式AI正在重塑开发流程和开发工具,通过自动化和优化软件开发过程,提高开发效率和质量。它可以帮助开发人员快速生成代码、测试和部署应用程序,同时减少错误和缺陷。此外,生成式AI还可以帮助开发人员快速理解和解决复杂的技术问…

Vulnhub靶机:Corrosion1

一、介绍 运行环境:Virtualbox 攻击机:kali(10.0.2.15) 靶机:corrosion:1(10.0.2.12) 目标:获取靶机root权限和flag 靶机下载地址:https://www.vulnhub.com/entry/c…

Vue3-46-Pinia-获取全局状态变量的方式

使用说明 在 Pinia 中,获取状态变量的方式非常的简单 : 就和使用对象一样。 使用思路 : 1、导入Store;2、声明Store对象;3、使用对象。 在逻辑代码中使用 但是 Option Store 和 Setup Store 两种方式定义的全局状态变量…

0109作业

1> 思维导图 2> 使用手动连接,将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中,在自定义的槽函数中调用关闭函数 将登录按钮使用qt5版本的连接到自定义的槽函数中,在槽函数中判断ui界面上输入的账号是否为"admin&quo…