大模型PEFT技术原理(一):BitFit、Prefix Tuning、Prompt Tuning

       随着预训练模型的参数越来越大,尤其是175B参数大小的GPT3发布以来,让很多中小公司和个人研究员对于大模型的全量微调望而却步,近年来研究者们提出了各种各样的参数高效迁移学习方法(Parameter-efficient Transfer Learning),即固定住Pretrain Language model(PLM)的大部分参数,仅调整模型的一小部分参数来达到与全部参数的微调接近的效果(调整的可以是模型自有的参数,也可以是额外加入的一些参数)。本文将介绍一些常见的参数高效微调技术,比如:BitFit、Prefix Tuning、Prompt Tuning、P-Tuning、P-Tuning v2、Adapter Tuning及其变体、LoRA、AdaLoRA、QLoRA、MAM Adapter、UniPELT等。

1、BitFit

论文地址:https://aclanthology.org/2022.acl-short.1.pdf

代码地址:https://github.com/benzakenelad/BitFit

       BitFIt只对模型的bias进行微调。在小规模-中等规模的训练数据上,BitFit的性能与全量微调的性能相当,甚至有可能超过,在大规模训练数据上,与其他fine-tuning方法也差不多。在大模型中bias存在Q,K,V,MLP,LayerNorm中,具体公式如下:

图片

图片

图片

      在Bert-Base/Bert-Large这种模型里,bias参数仅占模型全部参数量的0.08%~0.09%。但是通过在Bert-Large模型上基于GLUE数据集进行了 BitFit、Adapter和Diff-Pruning的效果对比发现,BitFit在参数量远小于Adapter、Diff-Pruning的情况下,效果与Adapter、Diff-Pruning想当,甚至在某些任务上略优于Adapter、Diff-Pruning。

图片

       通过Bitfit训练前后的参数对比,发现很多bias参数没有太多变化,例如跟计算key所涉及到的bias参数。发现其中计算query与中间MLP层的bias(将特征维度从N放大到4N的FFN层——将输入从768d转化为到3072d)变化最为明显,只更新这两类bias参数也能达到不错的效果,反之,固定其中任何一者,模型的效果都有较大损失。

图片

作者给出了Hugging Face与BitFit参数的映射关系表,如下所示:

图片

2、Prefix Tuning

论文地址:https://arxiv.org/pdf/2101.00190.pdf

代码地址:https://github.com/XiangLi1999/PrefixTuning

       prefix-tuning方法是一个轻量级的fine-tuning方法用于自然语言处理的生成任务。该方法可以保持预训练语言模型参数固定(frozen),而只需要在task-specific vector(称为prefix)上进行优化。即只需要少量(约0.1%)的优化参数,即可以在量和小量数据上达到不错的效果。

针对不同的模型结构,需要构造不同的Prefix。

  • 针对自回归架构模型:在句子前面添加前缀,得到 z = [PREFIX; x; y],合适的上文能够在固定 LM 的情况下去引导生成下文(比如:GPT3的上下文学习)。

  • 针对编码器-解码器架构模型:Encoder和Decoder都增加了前缀,得到 z = [PREFIX1; x; PREFIX2; y]。Encoder端增加前缀是为了引导输入部分的编码,Decoder 端增加前缀是为了引导后续token的生成。

图片

        如上图所示,  P_{idx}表示prefix indices序列,  |P_{idx}|表示prefix的长度。Prefix-tuning通过初始化可训练矩阵P_\theta  (维度为 |P_{idx} \times dim(h_i)| )来存储prefix参数:

 h_i=\left\{\begin{matrix} P_\theta [i,:], ifi even\\ LM_\phi (z_i,h<i), othervise\end{matrix}\right.

       training objective与Fine-tuning相同,但语言模型的参数\phi 固定,仅仅prefix参数\theta是可训练参数。因此h_i是可训练的P_\theta的函数,当i\in P_{idx}时,   h_i由 P_\theta 直接复制得到,对于i\notin P_{idx}  , 由于prefix activations始终在left context因此可以影响到   h_i 。

       在实验上,直接更新P_\theta  的参数会导致优化的不稳定以及表现上的极具下降。因此通过使用较小的矩阵 {P}'_\theta 通过大型前馈神经网络(MLP_\theta  )来reparametrize矩阵P_\theta  :

P_\theta [i,:] = MLP_\theta ({P}'_\theta [i,:])  

        其中,  P_\theta和 {P}'_\theta 在相同的行维度(也就是相同的prefix length), 但不同的列维度。当训练完成后,reparametrization参数被丢掉,仅仅prefix(P_\theta )  需要被保存下来。

        实验中对比了Fine Tuning和Prefix Tuning在E2E、WebNLG和DART三个table-to-text任务上的效果:

图片

图片

3、Prompt Tuning

论文地址:https://arxiv.org/pdf/2104.08691.pdf

代码地址:https://github.com/google-research/prompt-tuning

       Prompt Tuning可以看作是Prefix Tuning的简化版本,面向NLU任务,进行了更全面的效果对比,并且在大模型上成功打平了LM微调的效果,它给每个任务定义了自己的Prompt,然后拼接到数据上作为输入,但只在输入层加入prompt tokens,并且不需要加入 MLP 进行调整来解决难训练的问题。通过反向传播更新参数来学习prompts,而不是人工设计prompts;同时冻结模型原始权重,只训练prompts参数,训练完以后,用同一个模型可以做多任务推理。

图片

对比Prefix-Tunning,prompt-tuning的主要差异如下,

      论文使用100个prefix token作为默认参数,大于以上prefix-tuning默认的10个token,不过差异在于prompt-Tunning只对输入层(Embedding)进行微调,而Prefix是对虚拟Token对应的上游layer全部进行微调。因此Prompt-Tunning的微调参数量级要更小,且不需要修改原始模型结构,这是“简化”的来源。相同的prefix长度,Prompt-Tunning(<0.01%)微调的参数量级要比Prefix-Tunning(0.1%~1%)小10倍以上,如下图所示

图片

      为什么上面prefix-tuning只微调embedding层效果就不好,放在prompt-tuning这里效果就好了呢?因为评估的任务不同无法直接对比,个人感觉有两个因素,一个是模型规模,另一个是继续预训练,前者的可能更大些,在下面的消融实验中会提到   

效果&消融实验

      在SuperGLUE任务上,随着模型参数的上升,PromptTunning快速拉近和模型微调的效果,110亿的T5模型(上面prefix-tuning使用的是15亿的GPT2),已经可以打平在下游多任务联合微调的LM模型,并且远远的甩开了Prompt Design(GPT3 few-shot)

图片

      作者也做了全面的消融实验,包括以下4个方面,最核心的感受就是只要模型足够够大一切都好说

  1. prompt长度(a):固定其他参数,作者尝试了{1,5,20,100,150}, Prompt token 的长度在20左右时的表现已经不错(超过20之后,提升Prompt token长度,对模型的性能提升不明显了),同样的,这个gap也会随着模型参数规模的提升而减小(即对于超大规模模型而言,即使 Prompt token 长度很短,对性能也不会有太大的影响);

  2. Prompt初始化(b): 作者尝试了随机uniform初始化,用标签文本空间初始化,和用Top5K高频词采样初始化,在10^8规模,类标签词初始化效果最好。作者发现预测label也会在对应prompt空间内。不过到百亿规模后,初始化带来的影响就会消失;

  3. T5继续预训练(c):作者认为T5本身的Span Corruption预训练目标和掩码词,并不适合冻结LM的场景,因为在微调中模型可以调整预训练目标和下游目标的差异,而只使用prompt可能无法弥合差异。其实这里已经能看出En-Dn框架在生成场景下没有GPT这样的Decoder来的自然。因此作者基于LM目标对T5进行继续预训练;

  4. 继续预训练step(d):以上的继续预训练steps,继续预训练步数越高,模型效果在不同模型规模上越单调;

图片

可解释性

      考虑Prompt-Tunning使用Embedding来表征指令,可解释性较差。作者使用cosine距离来搜索prompt embedding对应的Top5近邻。发现如下:

  • embedding的近邻出现语义相似的cluster,例如{ Technology / technology / Technologies/ technological / technologies }, 说明连续prompt实际可能是相关离散prompt词的聚合语义

  • 当连续prompt较长(len=100), 存在多个prompt token的KNN相同:个人认为这和prefix-tuning使用MLP那里我的猜测相似,prompt应该是一个整体

  • 使用标签词初始化,微调后标签词也大概率会出现在prompt的KNN中,说明初始化可以提供更好的prior信息加速收敛

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/308360.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

TurboDesign安装包及安装教程

下载链接&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1I_jMid-z186GgvyH3ZExGQ 提取码&#xff1a;z936 1.解压下载好的压缩包。 2.进入解压后的文件夹并点击进入“ADT TURBODesign Suite 6.4.0”。 3.点击“安装包”进入文件夹。 4.找到“setup.exe”并右键点…

Docker入门介绍

【一】从 dotCloud 到 Docker——低调奢华有内涵 1、追根溯源:dotCloud 时间倒回到两年前&#xff0c;有一个名不见经传的小公司&#xff0c;他的名字叫做:dotCloud。 dotCloud 公司主要提供的是基于 PaaS(Platform as a Service&#xff0c;平台及服务) 平台为开发者或开发商…

训练自己的GPT2

训练自己的GPT2 1.预训练与微调2.准备工作2.在自己的数据上进行微调 1.预训练与微调 所谓的预训练&#xff0c;就是在海量的通用数据上训练大模型。比如&#xff0c;我把全世界所有的网页上的文本内容都整理出来&#xff0c;把全人类所有的书籍、论文都整理出来&#xff0c;然…

从零学Java 集合概述

Java 集合概述 文章目录 Java 集合概述1 什么是集合?2 Collection体系集合2.1 Collection父接口2.1.1 常用方法2.1.2 Iterator 接口 1 什么是集合? 概念&#xff1a;对象的容器&#xff0c;定义了对多个对象进行操作的常用方法&#xff1b;可实现数组的功能。 和数组区别&…

中小企业实施了MES系统后,同样具备大企业的生产能力

工业4.0、智能制造是当前制造业最热门的话题。数字化工厂是实现智能制造的基础&#xff0c;在建设数字化工厂的过程中&#xff0c;MES系统是核心也是最重要的一环。万界星空MES系统是企业信息数据集成的纽带&#xff0c;可帮助企业实现监控与实际生产过程的同步化&#xff0c;全…

基于JavaWeb+BS架构+SpringBoot+Vue校车调度管理系统的设计和实现

基于JavaWebBS架构SpringBootVue校车调度管理系统的设计和实现 文末获取源码Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 文末获取源码 Lun文目录 摘 要 1 Abstract 1 目 录 2 1 绪 论 1 1.1研究背景 1 1.2 研究意义 1 1.…

软件测试|Python openpyxl库使用指南

简介 我们之前介绍过&#xff0c;python在自动化办公方面可以大放异彩&#xff0c;因为Python有许多的第三方库&#xff0c;其中有很多库就支持我们对office软件进行操作&#xff0c;熟练的使用Python对office进行操作&#xff0c;可以实现自动化办公&#xff0c;极大提升我们…

【博士每天一篇论文-算法】Optimal modularity and memory capacity of neural reservoirs

阅读时间&#xff1a;2023-11-15 1 介绍 年份&#xff1a;2019 作者&#xff1a;Nathaniel Rodriguez 印第安纳大学信息学、计算和工程学院&#xff0c;美国印第安纳州布卢明顿 期刊&#xff1a; Network Neuroscience 引用量&#xff1a;39 这篇论文主要研究了神经网络的模块…

WEB 3D技术 three.js 光照与阴影

本文 我们来说 灯光与阴影 之前 我们有接触到光照类的知识 但是阴影应该都是第一次接触 那么 我们先来看光 首先是 AmbientLight 环境光 你在官网中搜索 AmbientLight 官方是就写明了 环境光是不会产生阴影的 因为 它没有反向 然后是 DirectionalLight 平行光 它是可以投射阴…

Java建筑工程建设智慧工地源码

智慧工地管理平台依托物联网、互联网&#xff0c;建立云端大数据管理平台&#xff0c;形成“端云大数据”的业务体系和新的管理模式&#xff0c;从施工现场源头抓起&#xff0c;最大程度的收集人员、安全、环境、材料等关键业务数据&#xff0c;打通从一线操作与远程监管的数据…

代理IP连接不上/网速过慢?如何应对?

当您使用代理时&#xff0c;您可能会遇到不同的代理错误代码显示代理IP连不通、访问失败、网速过慢等种种问题。 在本文中中&#xff0c;我们将讨论您在使用代理IP时可能遇到的常见错误、发生这些错误的原因以及解决方法。 一、常见代理服务器错误 当您尝试访问网站时&#…

MySQL 存储引擎全攻略:选择最适合你的数据库引擎

1. MySQL的支持的存储引擎有哪些 官方文档给出的有以下几种&#xff1a; 我们也可以通过SHOW ENGINES命令来查看&#xff1a; 还可以通过ENGINES表查看 2. 存储引擎比较 我们通过存储引擎表来看各自的优点&#xff1a; InnoDB 默认的存储引擎&#xff08;SUPPORT字段为D…

LeetCode 36 有效的数独

题目描述 有效的数独 请你判断一个 9 x 9 的数独是否有效。只需要 根据以下规则 &#xff0c;验证已经填入的数字是否有效即可。 数字 1-9 在每一行只能出现一次。数字 1-9 在每一列只能出现一次。数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。&#xff08;请参考…

[openGL]在ubuntu20.06上搭建openGL环境

就在刚刚, 我跑上了一个6小时后出结果的测试程序. 离下班还有很久, 于是我打开了接单群 , 发现了很多可以写的openGL项目. 但是!!我的电脑现在是ubuntu呀, 但是不要慌!!!接下来我一步一步教你如何完美搭建一个ubuntu上的openGL环境. 保证一个坑也不会踩! 文章目录 创建项目工作…

借助Gitee将typora图片上传CSDN

概述 前面已经发了一个如何借助Github将typora上的图片上传到csdn上&#xff0c;但这有个缺陷&#xff1a;需要科学上网才能加速查看已经上传到github上的图片&#xff0c;否则就会出现已经上传的图片&#xff0c;无法正常查看的问题 如何解决&#xff1f; 那就可以使用Gite…

前端(angular)在谷歌(chrome)浏览器使用高德地图api定位报错超时geolocation time out ,能定位但不安全的方法

已知信息整合 正如大家搜到的大佬说的原因是chrome浏览器本身的问题。我换成edge就可以。高德地图给出的地图定位api的常见问题&#xff0c;这是另外还有个别浏览器&#xff08;如google Chrome浏览器等&#xff09;本身的定位接口是黑洞 以下是能定位但不安全的方法 连接上…

Java面试之集合篇

前言 本篇主要总结JAVA面试中关于集合相关的高频面试题。本篇的面试题基于网络整理以及自己的总结编辑。在不断的完善补充哦。欢迎小伙伴们在评论区发表留言哦&#xff01; 1、基础 1.1、Java 集合框架有哪些&#xff1f; Java 集合框架&#xff0c;大家可以看看 《Java 集…

Excel·VBA按指定顺序排序函数

与之前写过的《ExcelVBA数组冒泡排序函数》不同&#xff0c;不是按照数值大小的升序/降序对数组进行排序&#xff0c;而是按照指定数组的顺序&#xff0c;对另一个数组进行排序 以下代码调用了《ExcelVBA数组冒泡排序函数》bubble_sort_arr函数&#xff08;如需使用代码需复制…

18张AI电脑动漫超清壁纸免费分享

18张AI电脑动漫壁纸&#xff0c;紫色系和暗黑系&#xff0c;都很不错&#xff0c;喜欢的朋友可以拿去 CSDN免积分下载

【云计算】云计算概述

1. 云计算概述 1.1 云计算的定义 美国国家标准与技术研究院(NIST)定义 云计算是一种按使用量付费的模式&#xff0c;这种模式提供可用的、便捷的、按需的网络访问&#xff0c;进入可配置的计算资源共享池(资源包括网络&#xff0c;服务器&#xff0c;存储&#xff0c;应用软件…