文心、讯飞、ChatGPT大模型横向比较

三种大模型的横向比较分析发现,大模型最终的优异表现依赖于模型规模的突破。

通过比较不同规模的大模型,分析发现大模型的强大生成能力主要源自模型的参数量级的飞跃。尽管方法论上大同小异,但参数量的指数级增长是实现质的飞跃的关键所在。“大力出奇迹”可以说是大模型取得辉煌成就的最本质原因。模型越大,所包含的知识量和拟合复杂分布的能力就越强,也就能产生越逼真的生成结果。

文心一言

https://yiyan.baidu.com/

文字理解回答能力

3月17日
6月6日

海报设计
假如你是一名海报设计师,需要给浦发银行设计一个宣传海报。
浦发银行要举办 2023上海半程马拉松,活动时间:2023年3月9日到2023年3月31日;活动内容:
活动期间在上马APP或官网,通过支付宝绑定浦发银行借记卡支付报名费,可享受立减60元优惠
在这里插入图片描述

社会关系推理

小明的爸爸妈妈结婚,没有邀请小明,小明会生气么?

在这里插入图片描述

讯飞星火

 https://xinghuo.xfyun.cn/

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

海报设计

假如你是一名海报设计师,需要给浦发银行设计一个宣传海报。
浦发银行要举办 2023上海半程马拉松,活动时间:2023年3月9日到2023年3月31日;活动内容:
活动期间在上马APP或官网,通过支付宝绑定浦发银行借记卡支付报名费,可享受立减60元优惠

在这里插入图片描述
社会关系推理

小明的爸爸妈妈结婚,没有邀请小明,小明会生气么?
在这里插入图片描述

ChatGPT

在这里插入图片描述

小明的爸爸妈妈结婚,没有邀请小明,小明会生气么?

在这里插入图片描述

BERT大模型原理

• 2018年,Google推出了Bert 模型,碾压了以往的所有模型,在各种NLP的建模任务中取得了最佳的成绩 => NLP 领域步入 LLM 时代。

在这里插入图片描述

BERT采用完形填空作为预训练:

在这里插入图片描述
空格处填什么字,受到上下文影响Bert的预训练 就是从大规模的上亿文本预料中,随机Mask一部分字,形成上面的完形填空题。通过训练,让模型具备从大量的数据中学习复杂的上下文联系的能力。

ERNIE大模型原理

ERNIE 1.0的改进:

基于phrase (比如短语a series of等)的mask策略基于entity (比如人名,位置,组织,产品等名词比如Tsinghua University, J. K. Rowling)的mask 策略相比于BERT 基于字的mask,在ERNIE 当中,由多个字组成的phrase 或者entity 当成统一单元,统一被mask。这样可以潜在的学习到知识的依赖。

ERNIE 2.0

在ERNIE 2.0 中,提出了一个预训练框架,可以在大型数据集合中进行增量训练,即连续学习(Continual Learning)连续学习的目的是在一个模型中顺序训练多个不同的任务,这样可以在学习下个任务中,记住前一个学习任务学习到的结果。
使用连续学习 => 不断积累新的知识

在这里插入图片描述
ERNIE 3.0

知识增强的大规模预训练模型结合了自回归网络和自编码网络,这样训练出来的模型就可以通过zero-shot学习、few-shot学习或微调来处理自然语言理解和生成任务用100亿个参数对大规模知识增强模型进行预训练,并在自然语言理解和自然语言生成任务上进行了一系列的实验评估ERNIE 3.0在54项基准测试中以较大的优势胜过最先进的模型,并在SuperGLUE基准测试中取得了第一名。

ERNIE预训练模型:https://github.com/PaddlePaddle/ERNIE

在这里插入图片描述

GPT大模型原理

GPT 与 BERT的区别:
• Bert 使用 Encoder 编码器进行训练,适合文本理解
• GPT 使用 Decoder 解码器,更适合文本生成领域

GPT-1 略逊色于 Bert,当时Bert影响力更大
在这里插入图片描述

GPT-2 模型:
• Bert霸榜NLP之后,又有很多新模型推出,比如:ERNIE, ALBert, BART, XLNET, T5等。
• Bert预训练主要是完形填空,和预测下一个句子。后来很多模型增加了 多个预训练任务句子打乱顺序再排序、选择题、判断题、改错题、甚至把机器翻译、文本摘要、领域问答都放到了预训练任务中=> 模型类似人脑,多种任务:看新闻,听音乐,读古诗,写文章,做数学题等

GPT-3 模型:

  • GPT-3模型参数量是1750亿,计算量是 bert-base的1000倍,在NLP多个任务中表现优秀,比如写SQL语句,JavaScript代码。

  • GPT-3的训练覆盖了STEM、人文科学、社会科学、数学、历史、法律等57门学科。难度从初级到高级专业水平不等。在这个基础上1750亿参数的GPT-3模型达到了43.9%准确率,而130亿参数的模型只有25%的准确率

大力出奇迹,参数量越大,效果越好

  • Prompt引导学习的方式,在超大模型上有很好的效果:只需要给出one-shot 或者few-shot,模型就能照猫画虎地给出正确答案。

这里10多亿参数的大模型是不行的,1000亿以上参数的模型效果好。

在这里插入图片描述

我是独立开源软件开发者,SolidUI作者,对于新技术非常感兴趣,专注AI和数据领域,如果对我的文章内容感兴趣,请帮忙关注点赞收藏,谢谢!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/308327.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

电子学会C/C++编程等级考试2023年12月(一级)真题解析

C/C++编程(1~8级)全部真题・点这里 第1题:数的输入和输出 输入一个整数和双精度浮点数,先将浮点数保留2位小数输出,然后输出整数。 时间限制:1000 内存限制:65536 输入 一行两个数,分别为整数N(不超过整型范围),双精度浮点数F,以一个空格分开。 输出 一行两个数,分…

嵌入式(二)单片机基础 | 单片机特点 内部结构 最小系统 电源 晶振 复位

上一篇文章我们介绍了嵌入式系统 嵌入式系统(Embedded System)是一种特定用途的计算机系统,它通常嵌入在更大的产品或系统中,用于控制、监测或执行特定的任务。这些系统通常由硬件和软件组成,旨在满足特定的需求&…

Kafka(四)Broker

目录 1 配置Broker1.1 Broker的配置broker.id0listererszookeeper.connectlog.dirslog.dir/tmp/kafka-logsnum.recovery.threads.per.data.dir1auto.create.topics.enabletrueauto.leader.rebalance.enabletrue, leader.imbalance.check.interval.seconds300, leader.imbalance…

JAVA静态引擎企业网站源码带文档

JAVA静态引擎企业网站源码带文档 系统介绍: 1.网站后台采用主流的 SSM 框架 jsp JSTL,网站前台采用freemaker静态化模版引擎生成html5 2.因为是生成的html,无需重复读取数据库,所以访问速度快,轻便,对服务器…

家用洗地机怎么选?家用洗地机排名

现代很多年轻人常常为家庭卫生问题而感到头痛。一整天的工作之后,回到家中还得花费大量时间来处理地面的清理工作,包括吸尘和拖地等繁琐的任务。这些任务让人感到相当烦躁,尤其是对于有小孩的家庭来说,地板上的油污和食物残渣经常…

前端项目构建打包生成Git信息文件

系列文章目录 TypeScript 从入门到进阶专栏 文章目录 系列文章目录前言一、前端项目构建打包生成Git信息文件作用二、步骤1.引入相关的npm包1.1. **fs** 包1.2. **child_process** 包1.3. **os** 包 (非必须 如果你想生成的文件信息中包含当前电脑信息则可用)1.4. **path** 包…

[足式机器人]Part2 Dr. CAN学习笔记-动态系统建模与分析 Ch02-7二阶系统

本文仅供学习使用 本文参考: B站:DR_CAN Dr. CAN学习笔记-动态系统建模与分析 Ch02-7二阶系统 1. 二阶系统对初始条件的动态响应 Matlab/Simulink - 2nd Order Syetem Response to IC2. 二阶系统的单位阶跃响应 2nd Order System Unit Step Response3. 二…

UniRepLKNet实战:使用UniRepLKNet实现图像分类任务(一)

文章目录 摘要安装包安装timm 数据增强Cutout和MixupEMA项目结构计算mean和std生成数据集一些问题 摘要 大核卷积神经网络(ConvNets)近年来受到广泛关注,但仍存在两个关键问题需要进一步研究。首先,目前的大型卷积神经网络架构大…

C++枚举类型可以作为返回值类型吗

当然&#xff1a; #include <iostream> // 定义一个枚举类型 enum class Color { RED, GREEN, BLUE }; // 函数返回枚举类型 Color getRandomColor() { static int nextColorIndex 0; Color color Color(nextColorIndex); nextColorIndex; if (nextColor…

Vue入门三(表单控制|购物车案例|v-model进阶|与后端交互|计算属性|监听属性|Vue生命周期)

文章目录 一、表单控制二、购物车案例三、v-model进阶四、与后端交互跨域问题解决&#xff0c;三种交互方法跨域问题详解1-CORS&#xff1a;后端代码控制&#xff0c;上面案例采用的方式1) 方式一&#xff1a;后端添加请求头2) 方式二&#xff1a;编写中间件3) 方式三&#xff…

杨中科 .NET Core 第一部分.NET Standard

1)不讲C#基础语法和NET基础类库(不需要学过ASPNET等)。需要懂HTML、JavaScript、数据库等。后续会录制基础视频 2)使用Visual Studio 2019 .NET .NET Framework Windows 程序 .NET Core 跨平台程序 .NET Standard 上述两者 遵从的标准 .NET5 开始上述统称为 .NET 新建.NET Sta…

解决CDN的网站后台无法获取访客真实ip的问题

宝塔的面板&#xff0c;网站后台获取到的不是访客的真实 ip &#xff0c;而是 CDN 的 ip &#xff0c;这给站长造成了不少影响&#xff0c;例如通过ip地址判定的设置都不准确&#xff0c;甚至假如网站被攻击&#xff0c;对方的真实ip地址都记录不到。 这个问题如何解决&#xf…

爬虫网易易盾滑块及轨迹算法案例:某乎

声明&#xff1a; 该文章为学习使用&#xff0c;严禁用于商业用途和非法用途&#xff0c;违者后果自负&#xff0c;由此产生的一切后果均与作者无关 一、滑块初步分析 js运行 atob(‘aHR0cHM6Ly93d3cuemhpaHUuY29tL3NpZ25pbg’) 拿到网址&#xff0c;浏览器打开网站&#xff0…

华云安攻击面发现及管理平台体验

省流&#xff1a; 无需【立即咨询】即可体验&#xff0c;开通即可查看演示数据&#xff0c;公开报价 界面&#xff1a; 界面简洁&#xff0c;要点清晰&#xff0c;可以清晰的看到暴露面及攻击面信息 功能&#xff1a; 资产发现&#xff1a;主域名发现、子域名发现、 IP 发现…

Qt 窗口阴影边框

环境&#xff1a;Qt 5.15 VS2019 方法一&#xff1a;QGraphicsDropShadowEffect 实现方法参考链接&#xff1a;https://blog.csdn.net/goforwardtostep/article/details/99549750 使用此方法添加窗口阴影&#xff0c;会出现警告信息&#xff1a; 且窗口最大化与还原切换时会…

Vue.js设计与实现阅读-3

Vue设计与实现阅读-3 1、声明式描述UI2、渲染器3、组件4、模板的工作原理5、Vue.js 是各个模块组成的有机整体 前言 前面一章我们了解了&#xff0c;开发体验是衡量一个框架的重要指标之一。提供友好的警告信息至关重要&#xff0c;但是越详细的警告信息&#xff0c;意味着框架…

【SpringCloud】之网关应用(进阶使用)

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是君易--鑨&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的博客专栏《SpringCloud开发之网关应用》。&#x1f3af;&a…

独立站上传产品的方式有哪些?如何快速上品?采集、同步、复制

简介&#xff1a; 搭建新独立站时&#xff0c;传统的复制粘贴将花费大量时间和精力且效率低下&#xff1b;而借助本应用&#xff0c;可有效地避免不必要的人力浪费。只需简单的几个步骤&#xff0c;加上少量的等待时间&#xff0c;即可轻松地将店铺数据从任何商店复制到您的商…

JAVA基础学习笔记-day16-网络编程

JAVA基础学习笔记-day16-网络编程 1. 网络编程概述1.1 软件架构1.2 网络基础 2. 网络通信要素2.1 如何实现网络中的主机互相通信2.2 通信要素一&#xff1a;IP地址和域名2.2.1 IP地址2.2.2 域名 2.3 通信要素二&#xff1a;端口号2.4 通信要素三&#xff1a;网络通信协议 3. 谈…

2024洗地机哪个牌子值得买?洗地机选购指南

在清洁家电的这个市场&#xff0c;洗地机可以说是勇往直前的&#xff0c;不仅在于它高效的深度清洁&#xff0c;还有要考虑它的时间&#xff0c;以及省力方面。在这个洗地机的市场不断地越做越大中&#xff0c;我们在考虑洗地机的配置以及性能上往往没有任何头绪。无线洗地机在…