时序分解 | Matlab实现CPO-VMD基于冠豪猪优化算法(CPO)优化VMD变分模态分解时间序列信号分解

时序分解 | Matlab实现CPO-VMD基于冠豪猪优化算法(CPO)优化VMD变分模态分解时间序列信号分解

目录

    • 时序分解 | Matlab实现CPO-VMD基于冠豪猪优化算法(CPO)优化VMD变分模态分解时间序列信号分解
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

基本介绍

【原创】CPO-VMD【24年新算法】
冠豪猪优化算法(CPO)优化VMD变分模态分解
实现平台:Matlab,中文注释清晰,非常适合科研小白。
冠豪猪优化器(Crested Porcupine Optimizer,CPO)于2024年1月发表在中科院1区SCI期刊Knowledge-Based Systems上。目前没人用,非常适合作为创新![闪亮]你就是第一个使用!
模型运行步骤:
1.利用冠豪猪优化算法优化VMD中的参数k、a,适应度函数为包络熵。分解效果好,包含分解效果图、频率图、收敛曲线等图等。
2.冠豪猪优化算法CPO是24年最新提出的新算法,没人用过。适合作为创新点。
3.附赠测试数据 直接运行main即可一键出图

程序设计

  • 完整源码和数据获取方式私信博主回复:Matlab实现CPO-VMD基于冠豪猪优化算法(CPO)优化VMD变分模态分解时间序列信号分解
[x, y] = size(signal);
if x > y
	C = y;% number of channels
    T = x;% length of the Signal
	signal = signal';
else
	C = x;% number of channels
    T = y;% length of the Signal
end
%---------- Preparations
% Sampling Frequency
fs = 1/T;

% Mirroring
f(:,1:T/2) = signal(:,T/2:-1:1);
f(:,T/2+1:3*T/2) = signal;
f(:,3*T/2+1:2*T) = signal(:,T:-1:T/2+1);
% Time Domain 0 to T (of mirrored signal)
T = size(f,2);
t = (1:T)/T;
% frequencies
freqs = t-0.5-1/T;
% Construct and center f_hat
f_hat = fftshift(fft(f,[],2),2);
f_hat_plus = f_hat;
f_hat_plus(:,1:T/2) = 0;

%------------ Initialization
% Maximum number of iterations 
N = 500;
% For future generalizations: individual alpha for each mode
Alpha = alpha*ones(1,K);
% matrix keeping track of every iterant 
u_hat_plus_00 = zeros(length(freqs), C, K);
u_hat_plus = zeros(length(freqs), C, K);
omega_plus = zeros(N, K);
% initialize omegas uniformly
switch init
	case 1
        omega_plus(1,:) = (0.5/K)*((1:K)-1);
    case 2
        omega_plus(1,:) = sort(exp(log(fs) + (log(0.5)-log(fs))*rand(1,K)));
    otherwise
        omega_plus(1,:) = 0;
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/308230.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Mysql系列-1.Mysql基本使用

👏作者简介:大家好,我是爱吃芝士的土豆倪,24届校招生Java选手,很高兴认识大家📕系列专栏:Spring源码、JUC源码、Kafka原理、分布式技术原理、数据库技术🔥如果感觉博主的文章还不错的…

【揭秘APT攻击】——内网渗透实战攻略,带你领略网络安全的绝密世界!

🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 💫个人格言:"没有罗马,那就自己创造罗马~" 目录 介绍 什么是内网? 什么是内网渗透? 内网渗透的目的: 内网…

leetcode:1716. 计算力扣银行的钱(python3解法)

难度:简单 Hercy 想要为购买第一辆车存钱。他 每天 都往力扣银行里存钱。 最开始,他在周一的时候存入 1 块钱。从周二到周日,他每天都比前一天多存入 1 块钱。在接下来每一个周一,他都会比 前一个周一 多存入 1 块钱。 给你 n &am…

微服务架构RabbitMQ实现CQRS模式

在现代软件开发中,微服务架构和CQRS模式都是备受关注的技术趋势。微服务架构通过将应用程序拆分为一系列小型、自治的服务,提供了更好的可伸缩性和灵活性。而CQRS模式则通过将读操作和写操作分离,优化了系统的性能和可维护性。本文小编将为大家介绍如何在ASP.NET Core微服务…

机器学习中的隐马尔可夫模型及Python实现示例

隐马尔可夫模型(HMM)是一种统计模型,用于描述观测序列和隐藏状态序列之间的概率关系。它通常用于生成观测值的底层系统或过程未知或隐藏的情况,因此它被称为“隐马尔可夫模型”。 它用于根据生成数据的潜在隐藏过程来预测未来的观…

第三次面试总结 - 吉云集团 - 全栈开发

🧸欢迎来到dream_ready的博客,📜相信您对专栏 “本人真实面经” 很感兴趣o (ˉ▽ˉ;) 专栏 —— 本人真实面经,更多真实面试经验,中大厂面试总结等您挖掘 目录 总结(非详细) 面试内…

AIGC无人直播系统技术

随着信息技术的快速发展和互联网的普及,直播行业迎来了蓬勃发展的机遇。然而,传统的直播方式存在一些局限性,如场地限制、设备携带不便等问题。为了解决这些问题,AIGC推出了一项创新性的无人直播系统技术。 AIGC无人直播系统技术…

FMEA的定义以及应用目标——SunFMEA软件

故障模式与影响分析(Failure Modes and Effects Analysis,简称FMEA)是一种预防性的质量工具,用于识别和评估产品设计、生产和使用过程中可能出现的故障模式及其对系统性能的影响。通过对故障模式的系统化分析和评估,FM…

​iOS 应用上架指南:资料填写及提交审核

目录 摘要 引言 打开appuploader工具,第二步:打开appuploader工具 第五步:交付应用程序,在iTunes Connect中查看应用程序 总结 摘要 本文提供了iOS新站上架资料填写及提交审核的详细指南,包括创建应用、资料填写-…

震惊!居然有人给 Raspberry Pi 5 做 X 射线!

Jeff Geerling 会做一些莫名其妙的怪事,比如用信鸽来对抗网速,不过这也是我们喜欢他视频的原因。最近,杰夫对 Raspberry Pi 5 进行了 X 光透视,揭示了 Raspberry Pi 5 最新、最强大的计算机内部的秘密。 震惊!居然有人…

软通测试岗面试内部资料

基础性问题 1.你对加班怎么看 2你的优势有哪些 3.你的缺点是什么 4.最有成就感的事情是什么 5.你的职业规划是什么 6离职原因是什么 7.还有什么想问我们的吗 8.你有其他的 offer 吗 专业性问题 9.HTTPS 和 HTTP 的区别 10.HTTPS 的工作原理 11.客户端在使用 HTTPS …

认识Linux指令 “zip/unzip” 指令

01.zip/unzip指令 语法: zip 压缩文件.zip 目录或文件 功能: 将目录或文件压缩成zip格式 常用选项: -r 递归处理,将指定目录下的所有文件和子目录一并处理 举例 将test2目录压缩:zip test2.zip test2/* 解压到…

CUTANA™ pAG-Tn5 for CUTTag

CUTANA pAG-Tn5是靶向剪切及转座酶(CUT&Tag)技术中进行高效绘制染色质特征的关键试剂。与ChIP-seq相比,CUT&Tag在降低细胞需求量和测序深度的信噪比方面进行了显著改进。CUTANA pAG-Tn5是一种高活性的E. coli转座酶突变体(Tn5)与蛋白A/G的融合产物&#xff…

Windows11快速安装Android子系统

很多小伙伴想在电脑运行一下安卓程序,或则上班用手机摸鱼不方便,用电脑又没有想要的手机软件,那么怎么用电脑来安装安卓软件呢? 首先设置地区 安装Android子系统的前提需要安装 Amazon Appstore 这个应用,内地不能下载…

【深入浅出JVM原理及调优】「搭建理论知识框架」全方位带你深入探索类加载机制

全方位带你深入探索类加载机制 专栏介绍前提准备面向人群知识脉络类加载是什么类加载和Class类对象的关系JVM的预加载机制加载class文件的方式 类加载过程(类的生命周期)加载阶段生成对应的Class文件 连接操作验证(确保被加载的类的正确性&am…

Aop编程之动态代理

1、Java代理介绍 Java中的代理方式包括静态代理和动态代理。 静态代理在编译期间就确定了代理对象,动态代理是在运行期间动态生成代理对象。动态代理包括cglib动态代理和jdk动态代理,在目标对象有接口的情况下,可以使用jdk动态代理或者cglib…

使用numpy处理图片——基础操作

大纲 准备工作图片像素大小修改透明度 numpy是一款非常优秀的处理多维数组的Python基础包。在现实中,我们最经常接触的多维数组相关的场景就是图像处理。本系列将通过若干篇对图像处理相关的探讨,来介绍numpy的使用方法,以获得直观的体验。 本…

element-plus里el-date-picker日期选择器,默认值不显示的问题

官网文档给出的示例默认值也是没有没显示的。 找了很多方法&#xff0c;最终是给v-model"defaultTime"绑定初始值&#xff0c;如下代码&#xff0c;需要的可以改一下 <el-date-picker class"top_select" v-model"defaultTime" type"da…

数模学习day11-系统聚类法

本文参考辽宁石油化工大学于晶贤教授的演示文档聚类分析之系统聚类法及其SPSS实现。 目录 1.样品与样品间的距离 2.指标和指标间的“距离” 相关系数 夹角余弦 3.类与类间的距离 &#xff08;1&#xff09;类间距离 &#xff08;2&#xff09;类间距离定义方式 1.最短…

SpringIOC之support模块GenericGroovyApplicationContext

博主介绍&#xff1a;✌全网粉丝5W&#xff0c;全栈开发工程师&#xff0c;从事多年软件开发&#xff0c;在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战&#xff0c;博主也曾写过优秀论文&#xff0c;查重率极低&#xff0c;在这方面有丰富的经验…