Amazing OpenAI API:把非 OpenAI 模型都按 OpenAI API 调用

分享一个有趣的小工具,10MB 身材的小工具,能够将各种不同的模型 API 转换为开箱即用的 OpenAI API 格式。

让许多依赖 OpenAI API 的软件能够借助开发者能够接触到的,非 OpenAI 的 API 私有部署和使用起来。

写在前面

这个小工具软件写于两周之前的 2023 年年底,开源在了 GitHub:soulteary/amazing-openai-api,有需要可以自取,欢迎一键三连。

开源小项目:AOA

目前项目只适配了三种我在使用的模型的 API,如果你觉得有其他的合适的 API 或者你认为很靠谱的模型,欢迎提交 PR。

这个小工具的思路借鉴于 stulzq/azure-openai-proxy,一个将 Azure OpenAI API 转换为 OpenAI API 格式的项目。在本地使用这个项目一段时间之后,我 fork 出了一个新的版本 soulteary/azure-openai-proxy,并将修改以 PR 形式反馈给了原始项目。随后,因为想在本地应用中测试 Yi-34B API,我制作了一个新的工具:soulteary/yi-openai-proxy,在随后 Gemini Pro API 出现了,想着不能每处一个模型就折腾一个这样的项目,后面太难维护了。

于是,我彻底重构了项目,并起一个略搞怪的名字:Amazing OpenAI API,和一个有意思的像是表情包的别名:AOA

下载工具

这个工具有两种使用方法,一种是从 GitHub Release 发布页面 下载二进制文件。

发布页面的二进制文件

另外一种方法,则是使用 Docker ,从社区下载 GitHub 自动构建好的指定版本的容器镜像:

docker pull soulteary/amazing-openai-api:v0.6.1

快速上手

AOA 的使用是不需要编写任何程序配置文件,我们通过指定环境变量就能够完成应用行为的调整。

我们可以通过这个方式调整的程序行为包括:“选择工作模型”、“设置模型运行需要的参数”、“设置模型兼容别名”。

直接运行可执行文件

程序默认支持三种模型的 API 转换,如果我们不进行任何参数指定,那么程序将默认将工作模型设置为 azure 模型。如果你希望使用 yi-34b-chatgemini-pro,需要设置环境变量 AOA_TYPE=yi 或者 AOA_TYPE=gemini,来让程序切换工作模式。

当我们不使用任何参数,直接执行程序(azure 模式)。这个时候,我们只需要额外设置环境变量 AZURE_ENDPOINT,就可以正常使用服务啦:

AZURE_ENDPOINT=https://你的部署名称.openai.azure.com/

完整的执行命令如下:

AZURE_ENDPOINT=https://你的部署名称.openai.azure.com/ ./aoa

当服务启动之后,我们的程序就可以通过访问 http://localhost:8080/v1/* 的地址,实现和访问 OpenAI 一样的 API 的效果啦。

使用 Docker 运行 AOA

如果你更喜欢使用 Docker,可以用下面的命令来实现和上面一样的效果:

docker run --rm -it -e AZURE_ENDPOINT=https://suyang231210.openai.azure.com/ -p 8080:8080 soulteary/amazing-openai-api:v0.6.1

同样的,我们就可以访问 http://localhost:8080/v1/* 的地址,使用 OpenAI 格式的请求来访问 Azure OpenAI、Yi 34B-Chat、Gemini Pro 啦。

每个模型的详细使用示例,可以参考下文中的 Docker Compose 使用示例。

工具特色

这个小工具有两个有趣的特色功能。

保护我们的 API Key

在日常测试各种 AI 应用的时候,许多应用都需要我们设置 API Key 给它。

你如果你希望不要将 API Key 暴露给应用,或者不放心各种复杂的开源软件是否有 API Key 泄漏风险。

我们可以将 API Key 配置在工具中,比如在 Azure 模式的时候,可以添加 AZURE_API_KEY=你的 API Key 这个环境变量。以上文中 Azure 的命令为例,我们可以将命令改写为:

AZURE_ENDPOINT=https://<你的 Endpoint 地址>.openai.azure.com/ AZURE_API_KEY=<你的 API KEY> AZURE_MODEL_ALIAS=gpt-3.5-turbo:gpt-35 ./aoa

然后,各种软件在请求的模型 API 的时候,就不需要再填写 API Key 啦,或者你随便填一个也行。

这样就起到了严格的 API Key 隔离,提升了 API Key 的安全性。

方便的模型映射功能

如果你使用 Azure,你一定知道 Azure 中的 Deployment Name 需要在请求参数中体现。同样的,Yi 模型、Gemini Pro 也需要在请求的时候,设置这些模型的名称在请求参数中。

但是,我们的使用的软件,通常只支持调用:GPT 3.5、GPT 3.5 Turbo、GPT-4 等等“事实标准”。 总不能每用一个软件就要改下人家代码,来适配这个模型名称吧,并且很多软件也不一定是开源的,折腾起来未免太麻烦了。

好在我们可以通过下面的方式,来将软件调用模型的名称进行一键“替换”,替换为我们实际在使用的模型。

比如,我们可以通过下面的方式,来将原始请求中的模型,映射为我们真实的模型名称。比如,想要将 GPT 3.5/4 都替换为 yi-34b-chat,我们可以这样写一条映射规则:

gpt-3.5-turbo:yi-34b-chat,gpt-4:yi-34b-chat

我们还是先拿上文中的 Azure 来举例,如果我们的 Azure 部署名称是 gpt-35,我们希望将软件请求中的 gpt-3.5gpt-4 都替换为这个部署名称:

AZURE_ENDPOINT=https://<你的 Endpoint 地址>.openai.azure.com/ AZURE_API_KEY=<你的 API KEY> AZURE_MODEL_ALIAS=gpt-3.5-turbo:gpt-35,gpt-4:gpt-35
 ./aoa

是不是很简单。

使用 Yi 34B Chat 模型

如果我们想将 Yi 官方的 API 转换为标准的 OpenAI API 调用,可以使用下面的命令:

AOA_TYPE=yi YI_ENDPOINT=<你的 API 地址> YI_API_KEY=<你的 API KEY> ./aoa

和使用 Azure 服务类似,我们可以使用一个技巧将各种开源、闭源软件使用的模型自动映射为我们希望的模型:

# 比如不论是 3.5 还是 4 都映射为 `gpt-35`
YI_MODEL_ALIAS=gpt-3.5-turbo:yi-34b-chat,gpt-4:yi-34b-chat

完整命令如下:

AOA_TYPE=yi YI_ENDPOINT=<你的 API 地址> YI_API_KEY=<你的 API KEY> YI_MODEL_ALIAS=gpt-3.5-turbo:yi-34b-chat,gpt-4:yi-34b-chat ./aoa

如果我们在启动服务的时候配置了 YI_API_KEY 的话,不论是开源软件也好,使用 curl 调用也罢,我们都不需要添加 Authorization: Bearer <你的 API Key>(也可以随便写),这样就起到了严格的 API Key 隔离,提升了 API Key 的安全性。

如果你还是习惯在请求头参数中添加认证内容,可以使用下面的不包含 YI_API_KEY 的命令,程序将透传验证到 Yi API 服务:

AOA_TYPE=yi YI_ENDPOINT=<你的 API 地址> YI_MODEL_ALIAS=gpt-3.5-turbo:yi-34b-chat,gpt-4:yi-34b-chat ./aoa

使用 Gemini Pro 模型

如果我们想将 Google 官方的 Gemini API 转换为标准的 OpenAI 调用,可以用下面的命令:

AOA_TYPE=gemini GEMINI_API_KEY=<你的 API KEY> ./aoa

和使用 Azure 服务类似,我们可以使用一个技巧将各种开源、闭源软件使用的模型自动映射为我们希望的模型:

# 比如不论是 3.5 还是 4 都映射为 `gpt-35`
GEMINI_MODEL_ALIAS=gpt-3.5-turbo:gemini-pro,gpt-4:gemini-pro

完整命令如下:

AOA_TYPE=gemini GEMINI_API_KEY=<你的 API KEY> GEMINI_MODEL_ALIAS=gpt-3.5-turbo:gemini-pro,gpt-4:gemini-pro ./aoa

和上面类似,如果你还是希望每次请求的时候,都携带 API Key,可以不传递 GEMINI_API_KEY 参数:

AOA_TYPE=gemini GEMINI_MODEL_ALIAS=gpt-3.5-turbo:gemini-pro,gpt-4:gemini-pro ./aoa

Docker Compose 使用示例

下面,我们分别以 Azure、Yi、Gemini 为例,演示下如何编写 docker-compose.yml 配置,先来看看 Azure:

version: "3"

services:
  amazing-openai-api:
    image: soulteary/amazing-openai-api:v0.6.1
    restart: always
    ports:
      - 8080:8080
    environment:
      - AZURE_ENDPOINT=https://<修改为你的部署名称>.openai.azure.com/
      - AZURE_API_KEY=<修改为你的API KEY>
      - AZURE_MODEL=gpt-4
      # 模型名称映射,比如将请求中的 GPT 3.5 Turbo 映射为 GPT 4
      - AZURE_MODEL_ALIAS=gpt-3.5-turbo:gpt-4
    logging:
      options:
        max-size: 1m

然后是 Yi:

version: "3"

services:
  amazing-openai-api:
    image: soulteary/amazing-openai-api:v0.6.1
    restart: always
    ports:
      - 8080:8080
    environment:
      # 设置工作模型为 YI
      - AOA_TYPE=yi
      # 设置 YI API 服务器地址
      - YI_ENDPOINT=<修改为你申请或搭建的服务地址>
      # 设置 YI API Key
      - YI_API_KEY=<修改为你的API KEY>
      # 模型名称映射,比如将请求中的 GPT 3.5 Turbo,GPT-4 都映射为 yi-34b-chat
      - YI_MODEL_ALIAS=gpt-3.5-turbo:yi-34b-chat,gpt-4:yi-34b-chat
    logging:
      options:
        max-size: 1m

最后是 Gemini:

version: "3"

services:
  amazing-openai-api:
    image: soulteary/amazing-openai-api:v0.6.1
    restart: always
    ports:
      - 8080:8080
    environment:
      # 设置工作模型为 Gemini
      - AOA_TYPE=gemini
      # 设置 Gemini API Key
      - GEMINI_API_KEY=<修改为你的API KEY>
      # 模型名称映射,比如将请求中的 GPT 3.5 Turbo,GPT-4 都映射为 gemini-pro
      - GEMINI_MODEL_ALIAS=gpt-3.5-turbo:gemini-pro,gpt-4:gemini-pro
      # 限制国内请求,需要使用服务器进行代理中转,或者跑在国外服务器上
      - https_proxy=http://10.11.12.90:7890
    logging:
      options:
        max-size: 1m

根据你的实际需求和想使用的模型情况,将上面的内容进行完善,并保存为 docker-compose.yml,然后执行 docker compose up -d,稍等片刻,服务就运行起来啦。

接着,我们可以使用自己顺手的软件来进行接口测试,比如用 curl 测试一把模型的流式输出:

curl http://0.0.0.0:8080/v1/chat/completions \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer soulteary" \
  -d '{
     "model": "gpt-4",
     "messages": [{"role": "user", "content": "Hello."}],
     "temperature": 0.2,
     "stream": true
   }'

命令执行完毕,我们将得到类似下面的输出:

data: {"id":"79fb180d21694513","created":0,"model":"yi-34b-chat","choices":[{"delta":{"role":"assistant"},"index":0}],"content":"","lastOne":false}

data: {"id":"79fb180d21694513","object":"chat.completion.chunk","created":3705525,"model":"yi-34b-chat","choices":[{"delta":{"role":"assistant","content":"Hello"},"index":0}],"content":"Hello","lastOne":false}

...

data: {"id":"79fb180d21694513","object":"chat.completion.chunk","created":3705525,"model":"yi-34b-chat","choices":[{"delta":{"role":"assistant","content":""},"index":0,"finish_reason":"stop"}],"content":"Hello! How can I assist you today? If you have any questions or need information on a specific topic, feel free to ask.","usage":{"completion_tokens":27,"prompt_tokens":14,"total_tokens":41},"lastOne":true}

data: [DONE]

或者用客户端软件,来一个最普通的模型 API 调用:

一个最简单的模型 AI 调用 GPT-4 (实际请求的是 Yi)

最后

这篇文章就先写到这里吧。

接下来,我们来聊聊用这个方式来折腾一些有趣的东西。

—EOF


本文使用「署名 4.0 国际 (CC BY 4.0)」许可协议,欢迎转载、或重新修改使用,但需要注明来源。 署名 4.0 国际 (CC BY 4.0)

本文作者: 苏洋

创建时间: 2024年01月09日
统计字数: 6809字
阅读时间: 14分钟阅读
本文链接: https://soulteary.com/2024/01/09/amazing-openai-api-call-all-non-openai-models-according-to-the-openai-api.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/306912.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

平板怎么录屏?轻松掌握录屏方法!

随着科技的发展&#xff0c;使用平板电脑进行学习、工作、娱乐的人越来越多。录制平板屏幕成为许多用户需要的功能&#xff0c;无论是用来制作教程、记录游戏过程还是保存重要信息。可是平板怎么录屏呢&#xff1f;在本文中&#xff0c;我们将为大家提供详细的步骤指导&#xf…

速学python·输入输出

和用户交互 程序与用户交互工程中 用户把信息传送给程序的过程是 输入 程序把结果展示给用户的过程是 输出 输入输出的最简单的方法是利用控制台 例如 和 都是控制台,进行输入和输出的作用 但是: 我们常见的交互界面,例如QQ,浏览器,Wegame等,都不需要输入命令,大大简化了操…

Windows环境下使用HTML5播放RTSP流

本文搭建环境选用Windows平台 一、使用笔记本摄像头推送RTSP视频流 参考文章:笔记本摄像头模拟监控推送RTSP流-CSDN博客 二、搭建Vue项目 参考项目&#xff1a; HTML5 播放 rtsp视频流 2.1 下载压缩包 2.2 解压文件&#xff0c;使用VSCode打开项目 2.3 启动项目 注&#…

Linux网络命令

文章目录 Linux网络网络配置命令1、ifconfig&#xff1a;查看网络接口信息&#xff08;显示所有活动网卡&#xff09;1.1 常用命令格式1.2 命令格式&#xff08;图文详解&#xff09;1.2.1 临时修改网卡名称1.2.2 永久修改网卡名称1.2.3 永久修改单个网卡 2、hostname&#xff…

Open CASCADE学习|模块组成

OpenCASCADE由七个模块组成&#xff0c;分别如下&#xff1a; Foundation Classes基础类 Modeling Data 建模数据 Modeling Algorithms 建模算法 Visualization 可视化 Data Exchange 数据交换 Application Framework 程序框架 Kernel Classes 核心类 2D Geometry 二维几…

巧用 G5g 畅游Android流媒体游戏

&#x1f497;wei_shuo的个人主页 &#x1f4ab;wei_shuo的学习社区 &#x1f310;Hello World &#xff01; 巧用 G5g 畅游Android流媒体游戏 概览 Amazon EC2 G5g 实例由 AWS Graviton2 处理器提供支持&#xff0c;并配备 NVIDIA T4G Tensor Core GPU&#xff0c;可为 Andro…

了解DC电源模块的基本参数及选择方法

BOSHIDA 了解DC电源模块的基本参数及选择方法 DC电源模块是一种用来提供稳定直流电源的设备&#xff0c;常被应用在电子产品测试、实验室设备等领域。了解DC电源模块的基本参数和选择方法有助于正确选择和使用合适的模块。 1. 输出电压范围&#xff1a;DC电源模块通常有固定的…

linux(ubuntu)中crontab定时器命令详解 以及windows中定时器

linux&#xff08;ubuntu&#xff09;中crontab定时器命令详解 crontab 是一个用于创建、编辑和管理用户的定时任务的命令&#xff0c;它可以让用户在指定的时间自动执行指定的命令或脚本。 基本语法 -e&#xff1a;编辑用户的 crontab 文件&#xff1b;-l&#xff1a;列出用…

dubbo与seata集成

1.seata是什么? Seata 是一款开源的分布式事务解决方案&#xff0c;致力于在微服务架构下提供高性能和简单易用的分布式事务服务。 2.seata的注解 GlobalTransactional&#xff1a;全局事务注解&#xff0c;添加了以后可实现分布式事务的回滚和提交&#xff0c;用法与spring…

计算机科学速成课【学习笔记】(4)——二进制

本集课程B站链接&#xff1a; 4. 二进制-Representing Numbers and Letters with Binary_BiliBili_哔哩哔哩_bilibili4. 二进制-Representing Numbers and Letters with Binary_BiliBili是【计算机科学速成课】[40集全/精校] - Crash Course Computer Science的第4集视频&…

Linux-shell简单学习

我是南城余&#xff01;阿里云开发者平台专家博士证书获得者&#xff01; 欢迎关注我的博客&#xff01;一同成长&#xff01; 一名从事运维开发的worker&#xff0c;记录分享学习。 专注于AI&#xff0c;运维开发&#xff0c;windows Linux 系统领域的分享&#xff01; 其他…

基于 SpringBoot + vue 的医院管理系统(含源码,数据库,文档)

基于 SpringBoot vue 的医院管理系统 †前后端分离思想&#xff0c;这个系统简直太棒了&#xff01;屯 光这个系统采用了 前后端分离思想&#xff0c;后端使用 SpringBoot和 SpringMVC框架&#xff0c;让代码更高效&#xff0c;更易于维护。前端则使用了 vue js 和ElementU…

极智AI | 谈谈通义舞王背后的技术Animate Anyone 让任何人动起来

欢迎关注我的公众号 [极智视界],获取我的更多技术分享 大家好,我是极智视界,本文分享了 谈谈通义舞王背后的技术Animate Anyone 让任何人动起来。 邀您加入我的知识星球「极智视界」,星球内有超多好玩的项目实战源码下载,链接:https://t.zsxq.com/0aiNxERDq 来吧,让我们…

【C++】十大排序算法

文章目录 十大排序算法插入排序O(n^2^)冒泡排序O(n^2^)选择排序O(n^2^)希尔排序——缩小增量排序O(nlogn)快速排序O(nlogn)堆排序O(nlogn)归并排序(nlogn)计数排序O(nk)基数排序O(n*k)桶排序O(nk) 十大排序算法 排序算法的稳定性&#xff1a;在具有多个相同关键字的记录中&…

Jmeter压缩包安装

JMeter安装及配置-Mac 本章要点 前置条件命令行安装压缩包安装 在Mac上安装对应的JMeter工具有两种方式&#xff1a;一种直接借助终端命令行brew进行安装&#xff1b;另外一种和Window电脑一样去JMeter官网下载压缩包安装。 JMeter不需要安装&#xff0c;但是JMeter作为java应用…

基于Springboot生活物资分配系统-计算机毕设 附源码 30174

Springboot生活物资分配系统 目 录 摘要 1 绪论 1.1目的与意义 1.2研究内容 1.3系统开发技术的特色 1.4springboot框架 2 1.5论文结构与章节安排 3 2 生活物资分配系统分析 4 2.1 可行性分析 4 2.2 系统流程分析 4 2.2.1数据增加流程 5 2.3.2数据修改流程 5 2.3.3数据删除…

第9章 正则表达式

学习目标 熟悉正则表达式,能够说出正则表达式的概念和作用 掌握正则表达式的创建,能够使用两种方式创建正则表达式 掌握正则表达式的使用,能够使用正则表达式进行字符串匹配 掌握正则表达式中元字符的使用,能够根据需求选择合适的元字符 掌握正则表达式中模式修饰符的使用,…

python_数据可视化_pandas_导入excel数据

目录 1.1导入库 1.2读取excel文件 1.3读取excel&#xff0c;指定sheet2工作表 1.4指定行索引 1.5指定列索引 1.6指定导入列 案例速览&#xff1a; 1.1导入库 import pandas as pd 1.2读取excel文件 pd.read_excel(文件路径) data pd.read_excel(D:/desktop/TestExcel…

Mysql判断一个表中的数据是否在另一个表存在

方式一&#xff1a; 判断A表中有多少条数据在B表中【存在】,并且显示这些数据–EXISTS语句 select A.ID, A.NAME from 表A where EXISTS(select * from 表B where A.IDB.ID) 判断A表中有多少条数据在B表中【不存在】&#xff0c;并且显示这些数据–NOT EXISTS语句 select …

嵌入式培训机构四个月实训课程笔记(完整版)-Linux系统编程第四天-Linux管道练习题(物联技术666)

更多配套资料CSDN地址:点赞+关注,功德无量。更多配套资料,欢迎私信。 物联技术666_嵌入式C语言开发,嵌入式硬件,嵌入式培训笔记-CSDN博客物联技术666擅长嵌入式C语言开发,嵌入式硬件,嵌入式培训笔记,等方面的知识,物联技术666关注机器学习,arm开发,物联网,嵌入式硬件,单片机…