数组中元素的插入和查找算法探究

数组的查找

线性查找

概念

线性查找也叫顺序查找,这是最基本的一种查找方法,从给定的值中进行搜索,从一端开始逐一检查每个元素,直到找到所需元素的过程。

元素序列的排列可以有序,也可以无序。

代码实现

public class Test01 {
	public static void main(String[] args) {
		//线性查找
		
		int[] arr = {45, 62, 15,62, 78, 30};
		
		int index = sequentialSearch01(arr, 62);
		System.out.println("指定元素首次出现的下标位置:" + index);
		
		List<Integer> indexList = sequentialSearch02(arr, 62);
		System.out.println("指定元素出现的下标位置的集合:" + Arrays.toString(indexList.toArray()));
	}
	
	/**
	 * 顺序查找
	 * 返回指定元素首次出现的下标位置
	 */
	public static int sequentialSearch01(int[] arr,int value){
		for (int i = 0; i < arr.length; i++) {
			if(arr[i] == value){
				return i;
			}
		}
		return -1;
	}
	
	/**
	 * 顺序查找
	 * 返回指定元素出现的下标位置的集合
	 */
	public static List<Integer> sequentialSearch02(int[] arr,int value){
		List<Integer> list = new ArrayList<>();
		for (int i = 0; i < arr.length; i++) {
			if(arr[i] == value){
				list.adds(i);
			}
		}
		return list;
	}
}

二分法查找

概念

二分查找(Binary Search)算法,也叫折半查找算法。

当要从一个序列中查找一个元素的时候,二分查找是一种非常快速的查找算法。

二分查找是针对有序数据集合的查找算法,如果是无序数据集合就遍历查找。

二分查找之所以快速,是因为它在匹配不成功的时候,每次都能排除剩余元素中一半的元素。因此可能包含目标元素的有效范围就收缩得很快,而不像顺序查找那样,每次仅能排除一个元素。

原理

比如有一个有序表数组[1,3,5,7,9,11,13,15,17,19,21],它是按照从小到大的顺序来进行排列的,现在需要在该有序表中查找元素19,步骤如下:

  1. 首先设置两个指针low和high,分别指向数据集合的第一个数据元素1(位序为0)和最后一个数据元素21(位序为10)。

然后把整个数据集合长度分成两半,并用一个指针指向它们的临界点,所以定义指针mid指向了中间元素11(位序5),也就是说mid=(high+low)/2,其中high和low都代表所指向的元素的位序,如下图:

在这里插入图片描述

  1. 接着,将mid所指向的元素(11)与待查找元素(19)进行比较。

因为19大于11,说明待查找的元素(19)一定位于mid和high之间。所以继续折半,则low = mid+1,而mid = (low+high)/2,结果如下图:

在这里插入图片描述

  1. 接着,又将mid所指向的元素(17)与待查找元素(19)进行比较,由于19大于17,所以继续折半,则low = mid+1,而mid = (low+high)/2,结果如下图:
    在这里插入图片描述
  1. 最后,又将mid所指向的元素(19)与待查找元素(19)进行比较,结果相等,则查找成功,返回mid指针指向的元素的位序。

如果查找的元素值不是19,而是20,那么在最后一步之前还得继续折半查找,最后出现的情况如下图:

在这里插入图片描述

代码实现

public class Test01 {
	public static void main(String[] args) {
		//二分法查找

		int[] arr = {1,2,3,4,5,6,7,8,9,11,11,11,11,11,11};

		int index = binarySearch01(arr, 11);
		System.out.println("指定元素出现的下标位置:" + index);

		List<Integer> indexList = binarySearch02(arr, 11);
		System.out.println("指定元素出现的下标位置的集合:" + Arrays.toString(indexList.toArray()));

		index = recursionbinarySearch01(arr, 0, arr.length-1, 11);
		System.out.println("递归方式 - 指定元素出现的下标位置:" + index);

		indexList = recursionbinarySearch02(arr, 0, arr.length-1, 11);
		System.out.println("递归方式 - 指定元素出现的下标位置的集合:" + Arrays.toString(indexList.toArray()));
	}

	/**
	 * 有序的数组中查找某个元素出现的下标位置
	 * 不使用递归的二分查找
	 * 返回出现的下标位置
	 */
	public static int binarySearch01(int[] arr,int val){

		int low = 0;
		int high = arr.length-1;

		while(low <= high){
			int mid = (low + high)/2;

			if(val > arr[mid]){
				//目标在右侧
				low = mid+1;
			}else if(val < arr[mid]){
				//目标在左侧
				high = mid-1;
			}else{
				return mid;
			}
		}
		return -1;
	}

	/**
	 * 有序的数组中查找某个元素首次出现的下标位置
	 * 不使用递归的二分查找
	 * 返回下标集合
	 */
	public static List<Integer> binarySearch02(int[] arr,int val){

		int low = 0;
		int high = arr.length-1;

		while(low <= high){
			int mid = (low + high)/2;

			if(val > arr[mid]){
				//目标在右侧
				low = mid+1;
			}else if(val < arr[mid]){
				//目标在左侧
				high = mid-1;
			}else{
				// 定义放置索引下标的集合
				List<Integer> list = new ArrayList<>();
				// 将首次查找的位置放入集合
				list.add(mid);

				// 判断是否还有重复值
				int index = mid + 1;
				while(index < arr.length){
					if(arr[index] == val){
						list.add(index);
					}else{
						break;
					}
					index++;
				}
				index = mid-1;
				while(index >= 0){
					if(arr[index] == val){
						list.add(index);
					}else{
						break;
					}
					index--;
				}
				return list;
			}
		}
		return null;
	}

	/**
	 * 有序的数组中查找某个元素出现的下标位置
	 * 使用递归的二分查找
	 * 返回出现的下标位置
	 */
	public static int recursionbinarySearch01(int[] arr,int low,int high,int val){

		if(val < arr[low] || val > arr[high] || low > high){
			return -1;
		}

		int mid = (low + high)/2;

		if(val > arr[mid]){
			//目标在右侧
			return recursionbinarySearch01(arr, mid+1, high, val);
		}else if(val < arr[mid]){
			//目标在左侧
			return recursionbinarySearch01(arr, low, mid-1, val);
		}else{
			return mid;
		}
	}
	
	/**
	 * 有序的数组中查找某个元素首次出现的下标位置
	 * 使用递归的二分查找
	 * 返回下标集合
	 */
	public static List<Integer> recursionbinarySearch02(int[] arr,int low,int high,int val){

		if(val < arr[low] || val > arr[high] || low > high){
			return null;
		}

		int mid = (low + high)/2;

		if(val > arr[mid]){
			//目标在右侧
			return recursionbinarySearch02(arr, mid+1, high, val);
		}else if(val < arr[mid]){
			//目标在左侧
			return recursionbinarySearch02(arr, low, mid-1, val);
		}else{
			// 定义放置索引下标的集合
			List<Integer> list = new ArrayList<>();
			// 将首次查找的位置放入集合
			list.add(mid);

			// 判断是否还有重复值
			int index = mid + 1;
			while(index < arr.length){
				if(arr[index] == val){
					list.add(index);
				}else{
					break;
				}
				index++;
			}
            
			index = mid-1;
			while(index >= 0){
				if(arr[index] == val){
					list.add(index);
				}else{
					break;
				}
				index--;
			}
			return list;
		}
	}
}

优缺点

优点:速度快,不占空间,不开辟新空间

缺点:必须是有序的数组,数据量太小没有意义

插值查找

概念

从折半查找中可以看出,折半查找的查找效率还是不错的。可是为什么要折半呢?为什么不是四分之一、八分之一呢?

打个比方,在牛津词典里要查找“apple”这个单词,会首先翻开字典的中间部分,然后继续折半吗?肯定不会,对于查找单词“apple”,我们肯定是下意识的往字典的最前部分翻去,而查找单词“zero”则相反,我们会下意识的往字典的最后部分翻去。

所以在折半查找法的基础上进行改造就出现了插值查找法,也叫做按比例查找。所以插值查找与折半查找唯一不同的是在于mid的计算方式上,它的计算方式为:

int mid = low + (high - low) * (val- arr[low]) / (arr[high] - arr[low])

这样就能快速定位目标数值所在的索引,比二分查找可以更快速实现查找。

自适应获取mid,也就是自适应查找点。

代码实现

public class Test01 {
	public static void main(String[] args) {
		//插值查找
		
		int[] arr = {1,2,3,4,5,6,7,8,9,11,11,11,11,11,11};

		int index = insertSearch01(arr, 11);
		System.out.println("指定元素出现的下标位置:" + index);

		List<Integer> indexList = insertSearch02(arr, 11);
		System.out.println("指定元素出现的下标位置的集合:" + Arrays.toString(indexList.toArray()));

		index = recursionInsertSearch01(arr, 0, arr.length-1, 11);
		System.out.println("递归方式 - 指定元素出现的下标位置:" + index);

		indexList = recursionInsertSearch02(arr, 0, arr.length-1, 11);
		System.out.println("递归方式 - 指定元素出现的下标位置的集合:" + Arrays.toString(indexList.toArray()));
	}

	/**
	 * 有序的数组中查找某个元素出现的下标位置
	 * 不使用递归的二分查找
	 * 返回出现的下标位置
	 */
	public static int insertSearch01(int[] arr,int val){

		int low = 0;
		int high = arr.length-1;

		while(low <= high){
			
			int mid = low + (high - low) * (val - arr[low])/(arr[high] - arr[low]);

			if(val > arr[mid]){
				//目标在右侧
				low = mid+1;
			}else if(val < arr[mid]){
				//目标在左侧
				high = mid-1;
			}else{
				return mid;
			}
		}
		return -1;
	}

	/**
	 * 有序的数组中查找某个元素首次出现的下标位置
	 * 不使用递归的二分查找
	 * 返回下标集合
	 */
	public static List<Integer> insertSearch02(int[] arr,int val){

		int low = 0;
		int high = arr.length-1;

		while(low <= high){
			int mid = low + (high - low) * (val - arr[low])/(arr[high] - arr[low]);

			if(val > arr[mid]){
				//目标在右侧
				low = mid+1;
			}else if(val < arr[mid]){
				//目标在左侧
				high = mid-1;
			}else{
				// 定义放置索引下标的集合
				List<Integer> list = new ArrayList<>();
				// 将首次查找的位置放入集合
				list.add(mid);

				// 判断是否还有重复值
				int index = mid + 1;
				while(index < arr.length){
					if(arr[index] == val){
						list.add(index);
					}else{
						break;
					}
					index++;
				}
				index = mid-1;
				while(index >= 0){
					if(arr[index] == val){
						list.add(index);
					}else{
						break;
					}
					index--;
				}
				return list;
			}
		}
		return null;
	}

	/**
	 * 有序的数组中查找某个元素出现的下标位置
	 * 使用递归的二分查找
	 * 返回出现的下标位置
	 */
	public static int recursionInsertSearch01(int[] arr,int low,int high,int val){

		if(val < arr[low] || val > arr[high] || low > high){
			return -1;
		}

		int mid = low + (high - low) * (val - arr[low])/(arr[high] - arr[low]);

		if(val > arr[mid]){
			//目标在右侧
			return recursionInsertSearch01(arr, mid+1, high, val);
		}else if(val < arr[mid]){
			//目标在左侧
			return recursionInsertSearch01(arr, low, mid-1, val);
		}else{
			return mid;
		}
	}
	
	/**
	 * 有序的数组中查找某个元素首次出现的下标位置
	 * 使用递归的二分查找
	 * 返回下标集合
	 */
	public static List<Integer> recursionInsertSearch02(int[] arr,int low,int high,int val){

		if(val < arr[low] || val > arr[high] || low > high){
			return null;
		}

		int mid = low + (high - low) * (val - arr[low])/(arr[high] - arr[low]);

		if(val > arr[mid]){
			//目标在右侧
			return recursionInsertSearch02(arr, mid+1, high, val);
		}else if(val < arr[mid]){
			//目标在左侧
			return recursionInsertSearch02(arr, low, mid-1, val);
		}else{
			// 定义放置索引下标的集合
			List<Integer> list = new ArrayList<>();
			// 将首次查找的位置放入集合
			list.add(mid);

			// 判断是否还有重复值
			int index = mid + 1;
			while(index < arr.length){
				if(arr[index] == val){
					list.add(index);
				}else{
					break;
				}
				index++;
			}
			index = mid-1;
			while(index >= 0){
				if(arr[index] == val){
					list.add(index);
				}else{
					break;
				}
				index--;
			}
			return list;
		}
	}
}

斐波那契查找

概念

斐波那契查找也叫做黄金分割法查找。

斐波那契查找也是二分查找的一种提升算法,通过运用黄金比例的概念在数列中选择查找点进行查找,提高查找效率。同样地,斐波那契查找也属于一种有序查找算法。

原理

对于斐波那契数列:1、1、2、3、5、8、13、21、34、55、89……(也可以从0开始),前后两个数字的比值随着数列的增加,越来越接近黄金比值0.618。

比如元素个数为89的有序列表。89在斐波那契数列中是34和55相加所得。

把元素个数为89的有序列表分成:前55个数据元素组成的前半段和34个数据元素组成的后半段。那么前半段元素个数和整个有序表长度的比值接近黄金比值0.618,而前后两段长度的比值也接近黄金比值0.618。

假如要查找的元素在前半段,那么继续按照斐波那契数列来看,55 = 34 + 21,所以继续把前半段分成前34个数据元素的前半段和后21个元素的后半段,继续查找,如此反复,直到查找成功或失败。这样斐波那契数列就被应用到查找算法中了。

总长度=f[k],

前半段长度=f[k-1],后半段长度=f[k-2]

在这里插入图片描述

有序列表的元素个数不是斐波那契数列中的数字时该如何处理呢?

当有序表的元素个数不是斐波那契数列中的某个数字时,需要把有序列表的长度补齐,让它成为斐波那契数列中的一个数值。

如果不是补齐,而是将多余的截掉是否可行?把原有序列表截断肯定是不可行的,因为可能把要查找的目标值截掉。

每次取斐波那契数列中的某个值时(f[k]),都会进行-1操作,这是因为数组下标从0开始。

代码实现


public class Test01 {
	public static void main(String[] args) {
		
		int[] arr = {1,13,25,37,49,51,62,68,70,80,80};
		
		List<Integer> fiboSearchList = fiboSearchList(arr, 80);
		System.out.println(Arrays.toString(fiboSearchList.toArray()));
	}
	
	public static List<Integer> fiboSearchList(int[] arr, int val) {
		
		int low = 0;
		int high = arr.length-1;
		
		// 斐波那契的索引下标。数组长度的数值在斐波那契数列中对应的索引下标
		int[] fiboArray = getFiboArray(10);//[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
		
		// 斐波那契的索引下标。数组长度的数值在斐波那契数列中对应的索引下标
		int k = 0;
		// 斐波那契的索引下标。数组长度的数值在斐波那契数列中对应的索引下标
		while(arr.length > fiboArray[k]){
			k++;
		}
		System.out.println("k = " + k);//6
		System.out.println("fiboArray = " + Arrays.toString(fiboArray));//[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
		
		// 利用Java工具类Arrays 构造新数组并指向 数组 arr[]
		int[] temp = Arrays.copyOf(arr, fiboArray[k]);
		System.out.println("temp=" + Arrays.toString(temp));
        //[1, 13, 25, 37, 49, 51, 62, 68, 70, 80, 80, 0, 0]
		
		//对新构造的数组进行元素补充,补充为最高位的数值
		for (int i = high+1; i < temp.length; i++) {
			temp[i] = arr[high];
		}
		System.out.println("补充数值的temp=" + Arrays.toString(temp));
        //[1, 13, 25, 37, 49, 51, 62, 68, 70, 80, 80, 80, 80]
		
		while(low <= high){
			
			//数列左侧有f[k-1]个元素
			int mid = low + fiboArray[k-1] - 1;
			
			if(val < temp[mid]){
				// 目标值小于mid所在元素,在左侧查找
				high = mid-1;
				
				/*全部元素=前部元素+后部元素
                 * f[k]=f[k-1]+f[k-2]
                 * 因为左侧有f[k-1]个元素,所以可以继续拆分f[k-1]=f[k-2]+f[k-3]
                 * 即在f[k-1]的前部继续查找 所以k-=1
                 * 即下次循环 mid=f[k-1-1]-1
                 */
				k-=1;
			}else if(val > temp[mid]){
				// 目标值大于mid所在元素,在右侧查找
				low = mid+1;
				
				/*全部元素=前部元素+后部元素
                 * f[k]=f[k-1]+f[k-2]
                 * 因为右侧有f[k-2]个元素,所以可以继续拆分f[k-2]=f[k-3]+f[k-4]
                 * 即在f[k-2]的前部继续查找 所以k-=2
                 * 即下次循环 mid=f[k-1-2]-1
               	 */
				k -= 2;
				
			}else{
				
				// 定义放置索引下标的集合
				ArrayList<Integer> list = new ArrayList<>();
				list.add(mid);
				
				int index = mid+1;
				while(index < arr.length){
					if(arr[index] == val){
						list.add(index);
						index++;
					}else{
						break;
					}
				}
				index = mid-1;
				while(index > 0){
					if(arr[index] == val){
						list.add(index);
						index--;
					}else{
						break;
					}
				}
				return list;
			}
		}
		return null;
	}
	
	public static int[] getFiboArray(int maxSize){
		
		int[] fiboArray = new int[maxSize];
		
		fiboArray[0] = 1;
		fiboArray[1] = 1;
		
		for (int i = 2; i < fiboArray.length; i++) {
			fiboArray[i] = fiboArray[i-1] + fiboArray[i-2];
		}
		return fiboArray;
	}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/303914.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

1-06格式化输入和输出

一、概述 格式化输入和输出其实指的就是C语言标准函数库<stdio.h>中的&#xff1a; scanf函数&#xff0c;用于从键盘读取输入。printf函数&#xff0c;用于向屏幕输出信息。 它们是C语言当中使用非常非常频繁的两个函数&#xff0c;所以很重要。 这两个函数的基本使…

SAP 表TPALOG 查询请求号的查询记录

SE16N输入表 TPALOG &#xff0c;查看到如下界面

Linux下Redis6下载、安装和配置教程-2024年1月5日

Linux下Redis6下载、安装和配置教程-2024年1月5日 一、下载二、安装三、启动四、设置开机自启五、Redis的客户端1.Redis命令行客户端2.windows上的图形化桌面客户端 一、下载 1.Redis的官方下载&#xff1a;https://redis.io/download/ 2.网盘下载&#xff1a; 链接&#xff…

stm32---输入捕获实验实操(巨详细)

这次来分享上次没说完的输入捕获的知识点 实验中用到两个引脚&#xff0c;一个是通用定时器 TIM3 的通道 1&#xff0c;即 PA6&#xff0c;用于输出 PWM 信号&#xff0c;另一 个是高级控制定时器 TIM1 的通道 1&#xff0c;即 PA8&#xff0c;用于 PWM 输入捕获&#xff0c;实…

rpm数据库被破坏,无法使用yum

转载说明&#xff1a;如果您喜欢这篇文章并打算转载它&#xff0c;请私信作者取得授权。感谢您喜爱本文&#xff0c;请文明转载&#xff0c;谢谢。 问题描述&#xff1a; 云服务器在安装了开源的HIDS插件后&#xff0c;发现安装了插件的服务器全部突然无法正常使用yum安装软件…

HTML JavaScript 康威生命游戏

<!DOCTYPE html> <html> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>康威生命游戏</title><style>body {font-family: Arial, sa…

Adobe XD是什么?探索这款创新的用户体验设计工具

Adobexd是一种基于矢量的设计工具&#xff0c;主要用于设计移动和Web应用程序的用户界面(UI)。与Photoshop或ilustrator等其他Adobe产品相比&#xff0c;它相当轻。对于对快速设计和原型迭代感兴趣的界面设计师来说&#xff0c;轻量级并不是一件坏事。 在早期&#xff0c;Adob…

LINUX常见问题之SYN flooding

一、什么是 SYN flooding&#xff1f; SYN Flood是流行的DoS&#xff08;拒绝服务攻击&#xff09;与DDoS&#xff08;分布式拒绝服务攻击&#xff09;的方式之一&#xff0c;这是一种利用TCP协议缺陷&#xff0c;发送大量伪造的TCP连接请求&#xff0c;塞满TCP等待连接队列&am…

12.字符串和正则表达式

使用正则表达式 正则表达式相关知识 在编写处理字符串的程序或网页时&#xff0c;经常会有查找符合某些复杂规则的字符串的需要&#xff0c;正则表达式就是用于描述这些规则的工具&#xff0c;换句话说正则表达式是一种工具&#xff0c;它定义了字符串的匹配模式&#xff08;…

基于 TensorFlow.js 构建垃圾评论检测系统

基于 TensorFlow.js 构建垃圾评论检测系统。 准备工作 在过去的十年中&#xff0c;Web 应用变得越来越具有社交性和互动性&#xff0c;而即使是在中等热门的网站上&#xff0c;也有数万人可能实时对多媒体、评论等的支持。 这也让垃圾内容发布者有机会滥用此类系统&#xff0c…

如何做到高可用、高吞吐、高扩展性

如何做到高可用、高吞吐、高扩展性 本文转自 公众号 ByteByteGo&#xff0c;如有侵权&#xff0c;请联系&#xff0c;立即删除 我们经常需要设计具有高可用性、高可扩展性和高吞吐量的系统。它们的确切含义是什么&#xff1f; 下图是一份系统设计小抄&#xff0c;包含“三高”…

Windows Server 2019 Standard 和 Datacenter 版本差异比较

文章目录 正式版本的通用功能差异锁定和限制差异服务器角色差异可用功能差异Windows 2019 ISO下载推荐阅读 在测试hyper-V的过程中&#xff0c;计划安装一个Windows 2019的OS&#xff0c;顺便了解Windows Server 2019 的 Standard 和 Datacenter 版本有哪些差异&#xff1f;我们…

NoSQL概述与Redis入门-redis安装与测试

一、Nosql概述 1、为什么使用Nosql 1、单机Mysql时代 90年代,一个网站的访问量一般不会太大&#xff0c;单个数据库完全够用。随着用户增多&#xff0c;网站出现以下问题 数据量增加到一定程度&#xff0c;单机数据库就放不下了数据的索引&#xff08;B Tree&#xff09;,一个…

基于zookeeper实现服务节点HA主备自动切换

文章目录 前言一、架构图和流程图二、流程说明1.服务启动初始化ZK、注册所有服务节点信息-MasterRegister2.创建、运行服务节点&#xff0c;并管理服务节点-LeaderSelectorZkClient。3.典型场景-调度服务单体执行-DigitalEmpTask 总结参考 前言 Spring Boot 主备切换可以采用数…

Go语言学习笔记

go变量和常量-初窥门径-CSDNGo技能树 安装检查go版本 在线运行 在线代码运行 (gotribe.cn) 新建一个文件夹 打开终端执行 go mod init learngo。这将创建一个名为go.mod 新建文件 main.go内容 package mainfunc main() {println("Hello world") } package main…

《BackTrader量化交易图解》 1~7 章

文章目录 1. BackTrader 简介1.1 BackTrader 量化软件特点1.2 模块介绍 2. 数据预处理2.1 数据格式2.2 Lines 内部数据格式 3. 策略编程3.1 SQN 指数&策略评估参数3.2 量化金融指标3.3 策略编程模板 4. Buy 买入策略5. Sell 卖出策略5.1 Position 仓位检查5.2 Smart Stakin…

【Vue3】2-4 : 声明式渲染及响应式数据实现原理

本书目录&#xff1a;点击进入 一、声明式渲染 1.1 什么是JS表达式&#xff1a;能够进行赋值的操作 ▶ 正确 ▶ 错误示例 二、示例&#xff1a;2秒后&#xff0c;页面中 message 由 hello world 变成 hi vue ▶ 效果 三、原理&#xff1a;利用ES6的Proxy对象对底层进…

【方法】如何合并7z分卷压缩文件?

压缩7z文件时&#xff0c;设置分卷压缩可以更方便文件的传输、存储和管理&#xff0c;如果后续不需要分卷了&#xff0c;除了可以将分卷文件解压出来&#xff0c;再压缩成一个文件&#xff0c;还可以利用解压缩软件&#xff0c;直接合并分卷文件。 我们常用的7-Zip和WinRAR都可…

【Linux Shell】9. 流程控制

文章目录 【 1. if else 判断 】1.1 if1.2 if else1.3 if elif else1.4 实例 【 2. case 匹配 】【 3. 循环 】3.1 for 循环3.2 while 循环3.3 until 循环3.4 无限循环3.5 跳出循环3.5.1 break 跳出所有循环3.5.2 continue 仅跳出当前循环 【 1. if else 判断 】 1.1 if fi 是…

Hyperledger Fabric 管理链码 peer lifecycle chaincode 指令使用

链上代码&#xff08;Chaincode&#xff09;简称链码&#xff0c;包括系统链码和用户链码。系统链码&#xff08;System Chaincode&#xff09;指的是 Fabric Peer 中负责系统配置、查询、背书、验证等平台功能的代码逻辑&#xff0c;运行在 Peer 进程内&#xff0c;将在第 14 …