大创项目推荐 深度学习图像修复算法 - opencv python 机器视觉

文章目录

  • 0 前言
  • 2 什么是图像内容填充修复
  • 3 原理分析
    • 3.1 第一步:将图像理解为一个概率分布的样本
    • 3.2 补全图像
  • 3.3 快速生成假图像
    • 3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构
    • 3.5 使用G(z)生成伪图像
  • 4 在Tensorflow上构建DCGANs
  • 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学图像修复算法

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 什么是图像内容填充修复

内容识别填充(译注: Content-aware fill ,是 photoshop
的一个功能)是一个强大的工具,设计师和摄影师可以用它来填充图片中不想要的部分或者缺失的部分。在填充图片的缺失或损坏的部分时,图像补全和修复是两种密切相关的技术。有很多方法可以实现内容识别填充,图像补全和修复。

  • 首先我们将图像理解为一个概率分布的样本。
  • 基于这种理解,学*如何生成伪图片。
  • 然后我们找到最适合填充回去的伪图片。

在这里插入图片描述

自动删除不需要的部分(海滩上的人)
在这里插入图片描述

最经典的人脸补充

补充前:

在这里插入图片描述

补充后:
在这里插入图片描述

3 原理分析

3.1 第一步:将图像理解为一个概率分布的样本

你是怎样补全缺失信息的呢?

在上面的例子中,想象你正在构造一个可以填充缺失部分的系统。你会怎么做呢?你觉得人类大脑是怎么做的呢?你使用了什么样的信息呢?

在博文中,我们会关注两种信息:

语境信息:你可以通过周围的像素来推测缺失像素的信息。

感知信息:你会用“正常”的部分来填充,比如你在现实生活中或其它图片上看到的样子。
两者都很重要。没有语境信息,你怎么知道填充哪一个进去?没有感知信息,通过同样的上下文可以生成无数种可能。有些机器学*系统看起来“正常”的图片,人类看起来可能不太正常。
如果有一种确切的、直观的算法,可以捕获前文图像补全步骤介绍中提到的两种属性,那就再好不过了。对于特定的情况,构造这样的算法是可行的。但是没有一般的方法。目前最好的解决方案是通过统计和机器学习来得到一个类似的技术。

在这里插入图片描述

从这个分布中采样,就可以得到一些数据。需要搞清楚的是PDF和样本之间的联系。

在这里插入图片描述

从正态分布中的采样

在这里插入图片描述
2维图像的PDF和采样。 PDF 用等高线图表示,样本点画在上面。

3.2 补全图像

首先考虑多变量正态分布, 以求得到一些启发。给定 x=1 , 那么 y 最可能的值是什么?我们可以固定x的值,然后找到使PDF最大的 y。
在这里插入图片描述
在多维正态分布中,给定x,得到最大可能的y

这个概念可以很自然地推广到图像概率分布。我们已知一些值,希望补全缺失值。这可以简单理解成一个最大化问题。我们搜索所有可能的缺失值,用于补全的图像就是可能性最大的值。
从正态分布的样本来看,只通过样本,我们就可以得出PDF。只需挑选你喜欢的 统计模型, 然后拟合数据即可。
然而,我们实际上并没有使用这种方法。对于简单分布来说,PDF很容易得出来。但是对于更复杂的图像分布来说,就十分困难,难以处理。之所以复杂,一部分原因是复杂的条件依赖:一个像素的值依赖于图像中其它像素的值。另外,最大化一个一般的PDF是一个非常困难和棘手的非凸优化问题。

3.3 快速生成假图像

在未知概率分布情况下,学习生成新样本

除了学 如何计算PDF之外,统计学中另一个成熟的想法是学 怎样用 生成模型
生成新的(随机)样本。生成模型一般很难训练和处理,但是后来深度学*社区在这个领域有了一个惊人的突破。Yann LeCun 在这篇 Quora
回答中对如何进行生成模型的训练进行了一番精彩的论述,并将它称为机器学习领域10年来最有意思的想法。

3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构

使用微步长卷积,对图像进行上采样

在这里插入图片描述
现在我们有了微步长卷积结构,可以得到G(z)的表达,以一个向量z∼pz 作为输入,输出一张 64x64x3 的RGB图像。

在这里插入图片描述

3.5 使用G(z)生成伪图像

基于DCGAN的人脸代数运算 DCGAN论文 。

在这里插入图片描述

4 在Tensorflow上构建DCGANs

部分代码:

def generator(self, z):
    self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*8*4*4, 'g_h0_lin', with_w=True)

    self.h0 = tf.reshape(self.z_, [-1, 4, 4, self.gf_dim * 8])
    h0 = tf.nn.relu(self.g_bn0(self.h0))

    self.h1, self.h1_w, self.h1_b = conv2d_transpose(h0,
        [self.batch_size, 8, 8, self.gf_dim*4], name='g_h1', with_w=True)
    h1 = tf.nn.relu(self.g_bn1(self.h1))

    h2, self.h2_w, self.h2_b = conv2d_transpose(h1,
        [self.batch_size, 16, 16, self.gf_dim*2], name='g_h2', with_w=True)
    h2 = tf.nn.relu(self.g_bn2(h2))

    h3, self.h3_w, self.h3_b = conv2d_transpose(h2,
        [self.batch_size, 32, 32, self.gf_dim*1], name='g_h3', with_w=True)
    h3 = tf.nn.relu(self.g_bn3(h3))

    h4, self.h4_w, self.h4_b = conv2d_transpose(h3,
        [self.batch_size, 64, 64, 3], name='g_h4', with_w=True)

    return tf.nn.tanh(h4)

def discriminator(self, image, reuse=False):
    if reuse:
        tf.get_variable_scope().reuse_variables()

    h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
    h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
    h2 = lrelu(self.d_bn2(conv2d(h1, self.df_dim*4, name='d_h2_conv')))
    h3 = lrelu(self.d_bn3(conv2d(h2, self.df_dim*8, name='d_h3_conv')))
    h4 = linear(tf.reshape(h3, [-1, 8192]), 1, 'd_h3_lin')

    return tf.nn.sigmoid(h4), h4

当我们初始化这个类的时候,将要用到这两个函数来构建模型。我们需要两个判别器,它们共享(复用)参数。一个用于来自数据分布的小批图像,另一个用于生成器生成的小批图像。

self.G = self.generator(self.z)
self.D, self.D_logits = self.discriminator(self.images)
self.D_, self.D_logits_ = self.discriminator(self.G, reuse=True)

接下来,我们定义损失函数。这里我们不用求和,而是用D的预测值和真实值之间的交叉熵(cross
entropy),因为它更好用。判别器希望对所有“真”数据的预测都是1,对所有生成器生成的“伪”数据的预测都是0。生成器希望判别器对两者的预测都是1 。

self.d_loss_real = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits,
                                            tf.ones_like(self.D)))
self.d_loss_fake = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,
                                            tf.zeros_like(self.D_)))
self.g_loss = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,
                                            tf.ones_like(self.D_)))
self.d_loss = self.d_loss_real + self.d_loss_fake

下面我们遍历数据。每一次迭代,我们采样一个小批数据,然后使用优化器来更新网络。有趣的是,如果G只更新一次,鉴别器的损失不会变成0。另外,我认为最后调用
d_loss_fake 和 d_loss_real 进行了一些不必要的计算, 因为这些值在 d_optim 和 g_optim 中已经计算过了。
作为Tensorflow 的一个联系,你可以试着优化这一部分,并发送PR到原始的repo。



    for epoch in xrange(config.epoch):
        ...
        for idx in xrange(0, batch_idxs):
            batch_images = ...
    
            batch_z = np.random.uniform(-1, 1, [config.batch_size, self.z_dim]) \
                        .astype(np.float32)
    
            # Update D network
            _, summary_str = self.sess.run([d_optim, self.d_sum],
                feed_dict={ self.images: batch_images, self.z: batch_z })


            # Update G network
            _, summary_str = self.sess.run([g_optim, self.g_sum],
                feed_dict={ self.z: batch_z })


            # Run g_optim twice to make sure that d_loss does not go to zero (different from paper)
            _, summary_str = self.sess.run([g_optim, self.g_sum],
                feed_dict={ self.z: batch_z })


            errD_fake = self.d_loss_fake.eval({self.z: batch_z})
            errD_real = self.d_loss_real.eval({self.images: batch_images})
            errG = self.g_loss.eval({self.z: batch_z})


最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/303804.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Nacos实战之配置中心与注册中心详解

前言 「作者主页」:雪碧有白泡泡 「个人网站」:雪碧的个人网站 ChatGPT体验地址 文章目录 前言注册中心Nacos 与 Eureka 区别 安装与运行WIN版Docker 版 父工程注册中心-服务提供方微服务 pom启动类yml参考 注册中心-服务调用方微服务pomyml 参考配置类…

Avalonia学习(二十一)-自定义界面演示

今天开始继续Avalonia练习。 本节&#xff1a;自定义界面 在网上看见一个博客&#xff0c;根据需要演示一下。 前台代码 <Window xmlns"https://github.com/avaloniaui"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:vm"using:…

vulhub中的Apache HTTPD 换行解析漏洞(CVE-2017-15715)详解

Apache HTTPD 换行解析漏洞&#xff08;CVE-2017-15715&#xff09; 1.cd到CVE-2017-15715 cd vulhub/httpd/CVE-2017-15715 2.运行docker-compose build docker-compose build 3.运行docker-compose up -d 4.查看docker-compose ps 5.访问 出现这个表示安装成功 6.漏洞复现…

​安全可靠测评结果公告(2023年第1号)

安全可靠测评主要面向计算机终端和服务器搭载的中央处理器&#xff08;CPU&#xff09;、操作系统以及数据库等基础软硬件产品&#xff0c;通过对产品及其研发单位的核心技术、安全保障、持续发展等方面开展评估&#xff0c;评定产品的安全性和可持续性&#xff0c;实现对产品研…

洛谷 P5194 [USACO05DEC] Scales S 刷题笔记

P5194 [USACO05DEC] Scales S - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 思路参考 大佬 薛定谔的鱼 的个人中心 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 维护一个前缀和数组 从后往前一个个遍历所有可能的组合 然后进行一定的剪枝 void bfs(int now,ll ma){ …

大师学SwiftUI第6章 - 声明式用户界面 Part 1

状态 在上一章&#xff0c;我们介绍了SwiftUI的主要特性&#xff0c;声明式语法。借助SwiftUI&#xff0c;我们可以按希望在屏幕上显示的方式声明视图&#xff0c;余下交由系统来创建所需的代码。但声明式语法不只用于组织视图&#xff0c;还可在应用状态发生变化时更新视图。…

sentinel入门,转载的,不记得在哪复制的了

sentinel 基本概念 开发的原因&#xff0c;需要对吞吐量&#xff08;TPS&#xff09;、QPS、并发数、响应时间&#xff08;RT&#xff09;几个概念做下了解&#xff0c;查自百度百科&#xff0c;记录如下&#xff1a; 响应时间(RT)   响应时间是指系统对请求作出响应的时间。…

第18课 移植FFmpeg和openCV到Android环境

要在Android下从事音视频开发&#xff0c;同样也绕不开ffmpegopencv&#xff0c;不管是初学者还是有一定经验的程序&#xff0c;面临的首要问题就是环境的搭建和库文件的编译配置等问题&#xff0c;特别是初学者&#xff0c;往往会在实际开发前浪费大量的时间来编译ffmpeg及ope…

neo4j图数据库的简单操作记录

知识图谱文件导出 首先停止运行sudo neo4j stop然后导出数据库 导出格式为&#xff1a; 具体命令如下sudo neo4j-admin database dump --to-path/home/ neo4j最后重启sudo neo4j start知识图谱外观修改 在网页点击节点&#xff0c;选中一个表情后点击&#xff0c;可修改其颜…

python接口自动化(八)--发送post请求的接口(详解)

1.简介 上篇介绍完发送get请求的接口&#xff0c;大家必然联想到发送post请求的接口也不会太难&#xff0c;被聪明的你又猜到了。答案是对的&#xff0c;虽然发送post请求的参考例子很简单&#xff0c;但是实际遇到的情况却是很复杂的&#xff0c;因为所有系统或者软件、网站都…

带前后端H5即时通讯聊天系统源码

带有前后端的H5即时通讯聊天系统源码。该源码是一个开源的即时通信demo&#xff0c;需要前后端配合使用。它的主要目的是为了促进学习和交流&#xff0c;并为大家提供开发即时通讯功能的思路。尽管该源码提供了许多功能&#xff0c;但仍需要进行自行开发。该项目最初的开发初衷…

社交心不死:支付宝内测兴趣社交

关注卢松松&#xff0c;会经常给你分享一些我的经验和观点。 支付宝又双叒做社交了&#xff0c;这次的“兴趣社区”能成吗&#xff1f; 支付宝做社交心不死&#xff0c;近期支付宝又开始内测名为“兴趣社区”的功能。主打找同频玩伴&#xff0c;徒步、骑行、钓鱼&#xff0c…

C#高级 10 Linq操作

1.Linq操作介绍 Linq操作是C#集成的类似于数据库语言的操作&#xff0c;是通过将数据库的表名映射为类&#xff0c;把数据库的列名映射为属性。 Linq查询主要分为3类&#xff1a;Linq to object(数组、list集合) --内存里面的数据 Linq to sql(查询数据库用的) --在数据库数据…

VScode/Xshell连接学校服务器

vscode连学校服务器 1.连接atrust VPN2.Xshell连接服务器2.1创建一个自己的用户 3.xftp传文件4.vscode连接服务器4.1下载remote-ssh4.2连接服务器4.3激活conda环境4.4运行代码 5. pytorch版本不兼容解决方案 1.连接atrust VPN 如果是使用的是校园网&#xff0c;可以不连接 2…

数据权限-模型简要分析

权限管控可以通俗的理解为权力限制&#xff0c;即不同的人由于拥有不同权力&#xff0c;他所看到的、能使用的可能不一样。对应到一个应用系统&#xff0c;其实就是一个用户可能拥有不同的数据权限&#xff08;看到的&#xff09;和操作权限&#xff08;使用的&#xff09;。 …

VUE3相比VUE2升级了哪些内容

目录 一、Vue 3 、Vue 2 对比及提升项 二、 Vue 3 创建app.vue示例 三、Vue3 的setup、Vue2 的 data对比 一、Vue 3 、Vue 2 对比及提升项 性能提升&#xff1a;Vue 3 做了大量的优化工作&#xff0c;提升了运行时的性能。例如&#xff0c;在模板编译时进行的静态分析和优化…

第16集《佛法修学概要》

&#xff08;三&#xff09;定不定业&#xff08;2&#xff09; 请大家打开讲义第四十页&#xff0c;我们讲到定业跟不定业。 定业就是说&#xff0c;这个业的结构非常坚固&#xff0c;它有主动得果报的力量&#xff0c;不必有其他的因缘就会主动跑出来&#xff0c;甚至于在今…

Qt构建MSVC2015环境过程

Qt构建MSVC2015环境过程 前言 之前用的Qt都是基于默认的MinGW编译器&#xff0c;由于目前工作的QT界面主要是跑在X86上&#xff0c;所以记录一下Qt配置MSVC2015的配置过程。根据查阅了解以后&#xff0c;个人理解的MinGW跟MSVC的区别在于前者主要是用于跨平台程序构建&#x…

Vue项目在本地跑起来 所有路径前面想加入前缀进行访问配置

一、业务场景&#xff1a; 在本地项目跑起来了&#xff0c;访问时想在所有路径后面加dev进行访问 二、目前效果 三、具体实现步骤&#xff1a; &#xff08;1&#xff09;实现静态文件加前缀 在vue.config.js文件里改变路径 publicPath: process.env.NODE_ENV "product…

苹果Find My查找芯片-伦茨科技ST17H6x支持苹果Find My认证

Apple「查找」Find My可通过庞大的“Apple Find My Network” 实现全球查找功能。无数iOS、iPadOS、macOS、watchOS激活设备与Find My 设备结合在一起&#xff0c;无需连接到Wi-Fi或者蜂窝网络&#xff0c;用户也可以给遗失的设备定位。对于任何iOS、iPadOS、macOS、watchOS设备…