【MATLAB第89期】基于MATLAB的差分自回归滑动平均模型ARIMA时间序列预测模型含预测未来

【MATLAB第89期】基于MATLAB的差分自回归滑动平均模型ARIMA时间序列预测模型含预测未来

往期文章
【MATLAB第82期】基于MATLAB的季节性差分自回归滑动平均模型SARIMA时间序列预测模型含预测未来

一、模型介绍

1、模型简介

差分自回归移动平均模型(Autoregressive Integrated Moving Average Model, ARIMA),又称为差分自回归移动平均模型,是时间序列预测常用的分析方法之一,常应用于不包含趋势和季节性的单变量数据的预测。

2、模型参数

ARIMA结构参数有七个:(p,d,q)

1、非季节性差分数
d:代表时序数据需要进行几阶差分化,才是稳定的,也叫Integrated项。使用ARIMA模型要求数据平稳。ARIMA的差分项有两个,非季节性差分通常在0~3之间。确定非季节性差分数d从0至3循环,平稳后停止,当检验模型参数时d=0时数据已经平稳。

2、确定ARIMA模型阶数
这个步骤中需要确定的阶数有2个:AR阶数p,MA阶数q。用基于AICBIC准则的方法定阶。
p:代表预测模型中采用的时序数据本身的滞后数(lags) ,也叫做AR/Auto-Regressive项。p通常在0~3之间,通过循环可得p=2时,AICBIC值最小。
q:代表预测模型中采用的预测误差的滞后数(lags),也叫做MA/Moving Average项。q通常在0~3之间,通过循环可得q=3时,AICBIC值最小。

3、残差检测
为了确保确定的阶数合适,还需要进行残差检验。残差即原始信号减掉模型拟合出的信号后的残余信号。如果残差是随机正态分布的、不自相关的,这说明残差是一段白噪声信号,也就说明有用的信号已经都被提取到模型中了
在这里插入图片描述

上图为残差检验的结果图。Standardized Residuals是查看残差是否接近正态分布,理想的残差要接近正态分布;ACF和PACF检验残差的自相关和偏自相关,理想的结果应该在图中不存在超出蓝线的点;最后一张QQ图是检验残差是否接近正太分布的,理想的结果中蓝点应该靠近红线。
除了上述图像检验方法,还可以通过Durbin-Watson对相关性进行检验:
Durbin-Watson 统计是计量经济学分析中最常用的自相关度量,该值接近2,则可以认为序列不存在一阶相关性。
运算结果为1.99,这个值越接近2越说明残差不存在一阶相关性。
上述检验可以证明,残差接近正态分布,且相互独立,可以认为ARIMA建模符合要求。

二、预测效果对比

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
表 ARIMA训练集和测试集预测结果评价指标
样本 RMSE MSE MAE R2
训练集 5.8556 34.2885 3.6008 0.87792
测试集 7.0661 49.9298 4.074 0.86357

表 SARIMA训练集和测试集预测结果评价指标
样本 RMSE MSE MAE R2
训练集 2.101 4.4143 0.88828 0.93821
测试集 1.6282 2.6511 1.1039 0.97196

从评价指标数值表的角度看,SARIMA相比ARIMA在销量预测上有较高的精度,测试所得的误差值较小,能深入挖掘长时间序列数据的深层规律。SARIMA对周期性波动性的挖掘较为深入。

三、部分代码展示

close all
clear all
%% 1.加载数据
xall= importdata('经营数据2.xlsx');%导入数据
time=xall.textdata;%时间数据
xnum = datenum(time(2:end,1)); % 将日期转为数值
data= xall.data(:,2);% 时间序列数据 
data1=data;
step = 12;

%% 2.d从03循环,平稳后停止
for d = 0:3
        dY = diff(data)%对原数据进行差分运算  
    if(getStatAdfKpss(dY)) %数据平稳
        disp(['非季节性差分数为',num2str(d)]);
        break;
    end
end
%% 3.确定阶数ARlags,MALags
max_ar = 3;    %ARlags上限
max_ma = 3;    %MALags上限
id=1;
[STD1, EstMdl1, canshu] = find_pdq_arima(id,max_ar,max_ma);

四、代码获取

1.阅读首页置顶文章
2.关注CSDN
3.根据自动回复消息,回复“89期”以及相应指令,即可获取对应下载方式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/302855.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

外包做了1个月,技术退步一大半了。。。

先说一下自己的情况,本科生,20年通过校招进入深圳某软件公司,干了接近4年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试…

【mysql】—— 事务

目录 (一)前言 (二)事务的理解 1、为什么会出现事务 2、什么是事务? 3、事务的版本支持 4、事务提交方式 (三)事务常见操作方式 1、正常演示 - 证明事务的开始与回滚 2、非正常演示…

CSAPP cache lab - Optimizing Matrix Transpose

CSAPP cache lab part B 矩阵转置 矩阵转置是一种操作,它将矩阵的行和列互换位置,即将原始矩阵的行变为转置矩阵的列,将原始矩阵的列变为转置矩阵的行。转置操作可以通过改变矩阵的布局来方便地进行某些计算和分析。 假设有一个mn的矩阵A&…

Qt读取文件对比:每次获取自定义的长度和使用系统的API,耗时对比

0. 前言 在编程过程中,经常遇到文件读写操作,太频繁了。每次也都写的不一样。 突发奇想,想测试下几种不同的读取文件的效率。 测试以下三种方式读取文件效率: 自定义读取文件耗时使用QFile类API读取文件耗时使用QTextStream类AP…

【BIAI】Lecture 5 - Auditory system

Lecture 5 - Auditory system 专业术语 auditory system 听觉系统 pinna 耳廓 auditory canal 耳道 tympanic membrane 鼓膜 cochlea 耳蜗 ossicles 听骨 auditory-vestibular nerve 前庭神经 oval window 椭圆窗 attenuation reflex 衰减反射 tensor tympani muscle 鼓膜张肌…

那些年听烂了的名词之“高可用“

那些年听烂了的名词之"高可用" 引言什么是可用性 ?哪些风险会影响系统的可用性 ?如何应对这些风险,从而确保系统的可用性 ?Phase: 设计做好容灾和多活处理做好容错设计做好资源隔离做好扩展性设计做好数据一致性处理 Phase: 预防做…

适配器Adapters

1.适配器作用 主要是对底层的东西进行改造 2.适配器种类:容器适配器,迭代器适配器,仿函数适配器 2.1容器适配器: stack,queue他们两的底层结构都为deque,deque有好多功能,而stack&#x…

如何将支持标准可观测性协议的中间件快速接入观测

前言 作为一名云原生工程师,如何将支持标准可观测性协议的中间件快速接入观测云呢?答案是只需要三步。 首先,需要确定您要观测的中间件类型。支持标准可观测性协议中间件可通过观测云的 DataKit 采集到中间件的关键指标。有些中间件自带可观…

文件系统与日志分析

一,文件系统 (一)inode 和block概述 1,文件数据包括元信息与实际数据 2,文件存储在硬盘上,硬盘最小存储单位是“扇区”,每个扇区存储512字节 3,block (块) 连续的八个扇区组成一…

Java常用类---包装类

包装类 包装类简介 Java语言是典型的面向对象编程语言,但是其中的8种基本数据类型并不支持面向对象编程,基本类型数据不具备"对象"的特性,即:没有携带属性以及没有方法可以调用。 为了解决上述问题,java为…

【Dubbo3高级特性】「微服务云原生架构」带你从零基础认识搭建公司内部服务用户中心体系(实战指南-01)

基础服务-用户中心 什么是用户中心? 用户中心,在我们的概念里面范围比较的广泛,包含了用户信息、账号信息以及租户信息的管理控制,在我们的总体设计里面,如果设计的边界较为紧密,也可以将权限的部分功能R…

poium测试库介绍

poium测试库前身为selenium-page-objects测试库,我在以前的文章中也有介绍过:这可能是最简单的Page Object库,项目的核心是基于Page Objects实现元素定位的封装。该项目由我个人在维护,目前在公司项目中已经得到的应用。 ### poium的优势 Pa…

Unity中URP下使用屏幕坐标采样深度图

文章目录 前言一、Unity使用了ComputeScreenPos函数得到屏幕坐标1、 我们来看一下这个函数干了什么2、我们看一下该函数实现该结果的意义 二、在Shader中使用(法一)1、在Varying结构体中2、在顶点着色器中3、在片元着色器中 三、在Shader中使用&#xff…

微信小程序实战-01翻页时钟-1

文章目录 前言需求分析功能设计界面设计界面结构设计界面样式设计 逻辑设计 单页功能实现运行结果 前言 我经常在手机上用的一款app有一个功能是翻页时钟,基于之前学习的小程序相关的基础内容,我打算在微信小程序中也设计一个翻页时钟功能,J…

高校教务系统登录页面JS分析——河北农业大学教务系统

高校教务系统密码加密逻辑及JS逆向 本文将介绍高校教务系统的密码加密逻辑以及使用JavaScript进行逆向分析的过程。通过本文,你将了解到密码加密的基本概念、常用加密算法以及如何通过逆向分析来破解密码。 本文仅供交流学习,勿用于非法用途。 一、密码加…

如何创建容器搭建节点

1.注册Discord账号 https://discord.com/这是登录网址: https://discord.com/ 2.点击startnow注册,用discord注册或者邮箱注册都可,然后登录tickhosting Tick Hosting这是登录网址:Tick Hosting 3.创建servers 4.点击你创建的servers,按照图中步骤进行

J2EE实验二

实验二 Struts2核心组件的应用 一、目的与任务 目的:学习Action中的动态方法调用和Action对Servlet API的三种访问方法,学习OGNL表达式和Struts2标签的使用 任务:实现基于Struts2的登录和注册系统,系统中练习使用Action、OGNL表…

SpringBoot项目处理 多数据源问题(把本地库数据 推送 到另外一个平台的库)

一、需求梳理 把我方数据库的表中数据 ----------> 推送到第三方的数据库 相当于库对库的数据插入, 但是需要的是用代码的方式实现; 二、解决思维 (1) 首先,平台与平台之间的数据库对接; 处理点1: 字段转换 (库表之间的数据字段不一致问题) 解决方式: 挨个字段的对应,如…

每日算法打卡:数的三次方根 day 7

文章目录 原题链接题目描述输入格式输出格式数据范围输入样例:输出样例: 题目分析示例代码 原题链接 790. 数的三次方根 题目难度:简单 题目描述 给定一个浮点数 n,求它的三次方根。 输入格式 共一行,包含一个浮…