强化学习的数学原理学习笔记 - 策略梯度(Policy Gradient)

文章目录

  • 概览:RL方法分类
  • 策略梯度(Policy Gradient)
    • Basic Policy Gradient
      • 目标函数1:平均状态值
      • 目标函数2:平均单步奖励
      • 🟡PG梯度计算
    • 🟦REINFORCE


本系列文章介绍强化学习基础知识与经典算法原理,大部分内容来自西湖大学赵世钰老师的强化学习的数学原理课程(参考资料1),并参考了部分参考资料2、3的内容进行补充。

系列博文索引:

  • 强化学习的数学原理学习笔记 - RL基础知识
  • 强化学习的数学原理学习笔记 - 基于模型(Model-based)
  • 强化学习的数学原理学习笔记 - 蒙特卡洛方法(Monte Carlo)
  • 强化学习的数学原理学习笔记 - 时序差分学习(Temporal Difference)
  • 强化学习的数学原理学习笔记 - 值函数近似(Value Function Approximation)
  • 强化学习的数学原理学习笔记 - 策略梯度(Policy Gradient)
  • 强化学习的数学原理学习笔记 - Actor-Critic

参考资料:

  1. 【强化学习的数学原理】课程:从零开始到透彻理解(完结)(主要)
  2. Sutton & Barto Book: Reinforcement Learning: An Introduction
  3. 机器学习笔记

*注:【】内文字为个人想法,不一定准确

概览:RL方法分类

图源:https://zhuanlan.zhihu.com/p/36494307
*图源:https://zhuanlan.zhihu.com/p/36494307

策略梯度(Policy Gradient)

在先前的内容中,策略用表(tabular)的形式进行表达,其也可以用函数的形式进行表达(尤其是当状态空间或动作空间连续或非常大时),优势在于降低存储开销和提升泛化能力。

之前的方法(值函数近似)称之为Value-based,而策略梯度(Policy Gradient)和Actor-Critic均为Policy-based。Value-based方法围绕状态值/动作值设计,而Policy-based优化关于策略的目标函数,从而直接得到最优策略。

Basic Policy Gradient

将策略表示为参数化函数: π ( a ∣ s , θ ) \pi(a|s, \theta) π(as,θ),其中 θ ∈ R m \theta \in \mathbb{R} ^m θRm为参数向量, π \pi π是关于 θ \theta θ的函数。
*其他写法: π ( a , s , θ ) \pi(a,s, \theta) π(a,s,θ) π θ ( a ∣ s ) \pi_\theta(a|s) πθ(as) π θ ( a , s ) \pi_\theta(a,s) πθ(a,s)

与tabular representation的区别:

  1. 最优策略:不是能够最大化每个状态值的策略,而是能够最大化特定scalar metrics的策略
  2. 动作概率:不能直接获取,需要进行计算
  3. 策略更新:不能直接更新,需要通过改变参数 θ \theta θ来进行改变

策略梯度方法通过优化指定目标函数 J ( θ ) J(\theta) J(θ),直接得到最优策略:
θ t + 1 = θ t + α ∇ θ J ( θ t ) \theta_{t+1} = \theta_t + \alpha \nabla_\theta J(\theta_t) θt+1=θt+αθJ(θt)
目标函数 J ( θ ) J(\theta) J(θ)通常有以下两种类型:平均状态值 v ˉ π \bar{v}_\pi vˉπ和平均单步奖励 r ˉ π \bar{r}_\pi rˉπ。实际上,当奖励折扣值 γ < 1 \gamma<1 γ<1时,二者是等价的: r ˉ π = ( 1 − γ ) v ˉ π \bar{r}_\pi = (1- \gamma) \bar{v}_\pi rˉπ=(1γ)vˉπ

目标函数1:平均状态值

平均状态值(average state value / average value):
v ˉ π = ∑ s ∈ S d ( s ) v π ( s ) = E [ v π ( S ) ] \bar{v}_\pi = \sum_{s\in{\mathcal{S}}} d(s) v_\pi(s) = \mathbb{E}[v_\pi(S)] vˉπ=sSd(s)vπ(s)=E[vπ(S)]
其中, d ( s ) ≥ 0 d(s) \geq 0 d(s)0 ∑ s ∈ S d ( s ) = 1 \textstyle\sum_{s\in{\mathcal{S}}} d(s) =1 sSd(s)=1,因此 d ( s ) d(s) d(s)既可以看作是状态 s s s的权重,也可以看作是随机变量 S S S的概率分布。

其他形式: v ˉ π = E [ ∑ t = 0 ∞ γ t R t + 1 ] \bar{v}_\pi = \mathbb{E} \Big[\sum_{t=0}^{\infin} \gamma^t R_{t+1} \Big] vˉπ=E[t=0γtRt+1]

向量形式: v ˉ π = d T v π \bar{v}_\pi = d^T v_\pi vˉπ=dTvπ

在常见的情况下, d d d是取决于 π \pi π的平稳分布,即 d π ( s ) d_\pi(s) dπ(s),其具有以下性质:
d π T P π = d π T d^T_\pi P_\pi = d^T_\pi dπTPπ=dπT
其中, P π P_\pi Pπ是状态转移概率矩阵。

目标函数2:平均单步奖励

平均单步奖励(average one-step reward / average reward)
r ˉ π = ∑ s ∈ S d ( s ) r π ( s ) = E [ r π ( S ) ] \bar{r}_\pi = \sum_{s\in{\mathcal{S}}} d(s) r_\pi(s) = \mathbb{E}[r_\pi(S)] rˉπ=sSd(s)rπ(s)=E[rπ(S)]
其中, S ∼ d π S \sim d_\pi Sdπ d π d_\pi dπ为平稳分布。 r π ( s ) = ∑ a ∈ A π ( a ∣ s ) r ( s , a ) r_\pi(s) = \sum_{a\in\mathcal{A}} \pi(a|s) r(s, a) rπ(s)=aAπ(as)r(s,a)为策略 π \pi π在状态 s s s下取得的平均单步奖励,而 r ( s , a ) = E [ R ∣ s , a ] = ∑ r r p ( r ∣ s , a ) r(s, a) = \mathbb{E} [R|s, a] = \sum_r r p(r | s, a) r(s,a)=E[Rs,a]=rrp(rs,a)

另一种形式:
假设agent遵循一个策略生成了奖励为 ( R t + 1 , R t + 2 , ⋯   ) (R_{t+1}, R_{t+2}, \cdots) (Rt+1,Rt+2,)的trajectory,其平均单步奖励为:
lim ⁡ n → ∞ 1 n E [ ∑ k = 1 n R t + k ∣ S t = s 0 ] \lim_{n\rarr\infin} \frac{1}{n} \mathbb{E} \Big[ \sum_{k=1}^{n} R_{t+k} | S_t = s_0 \Big] limnn1E[k=1nRt+kSt=s0]
其中, s 0 s_0 s0为该trajectory的起始状态。考虑无穷多步的极限,上式等价于【似乎是与平稳随机过程有关,时间平均等于统计平均,不确定】:
lim ⁡ n → ∞ 1 n E [ ∑ k = 1 n R t + k ] = r ˉ π \lim_{n\rarr\infin} \frac{1}{n} \mathbb{E} \Big[ \sum_{k=1}^{n} R_{t+k} \Big] = \bar{r}_\pi limnn1E[k=1nRt+k]=rˉπ

🟡PG梯度计算

策略梯度方法的梯度计算可以统一总结为下式:
∇ θ J ( θ ) = ∑ s ∈ S η ( s ) ∑ a ∈ A ∇ θ π ( a ∣ s , θ ) q π ( s , a ) \nabla_\theta J(\theta) = \sum_{s\in\mathcal{S}} \eta (s) \sum_{a\in\mathcal{A}} \nabla_\theta \pi (a|s, \theta) q_\pi(s, a) θJ(θ)=sSη(s)aAθπ(as,θ)qπ(s,a)
其中:

  • J ( θ ) J(\theta) J(θ)可以为 v ˉ π \bar{v}_\pi vˉπ r ˉ π \bar{r}_\pi rˉπ v ˉ π 0 \bar{v}_\pi^0 vˉπ0
  • = = =可以为相等、约等 ≈ \approx 、成比例 ∝ \propto
  • η \eta η是状态的分布或权重(如上文中的 d π d_\pi dπ

进一步地,可以基于下式计算梯度
∇ θ J ( θ ) = E [ ∇ θ ln ⁡ π ( A ∣ S , θ ) q π ( S , A ) ] \nabla_\theta J(\theta) = \mathbb{E} [\nabla_\theta \ln\pi (A|S, \theta) q_\pi(S, A) ] θJ(θ)=E[θlnπ(AS,θ)qπ(S,A)]
其中, S ∼ η S\sim\eta Sη A ∼ π ( A ∣ S , θ ) A\sim\pi(A|S, \theta) Aπ(AS,θ)。通过随机采样的方式估计期望,则有:
∇ θ J ( θ ) ≈ ∇ θ ln ⁡ π ( A ∣ S , θ ) q π ( S , A ) \nabla_\theta J(\theta) \approx \nabla_\theta \ln\pi (A|S, \theta) q_\pi(S, A) θJ(θ)θlnπ(AS,θ)qπ(S,A)

注意:为了计算对数 ln ⁡ \ln ln,对所有的 s , a , θ s, a,\theta s,a,θ,策略必须满足: π ( a ∣ s , θ ) > 0 \pi(a|s, \theta) > 0 π(as,θ)>0。即:策略必须是随机性(stochastic)的,且为探索性(exploratory)的。(*确定性策略见后续介绍Actor-Critic的博文中的DPG)
这可以通过softmax实现,将向量从 ( − ∞ , + ∞ ) (-\infin,+\infin) (,+)限界至 ( 0 , 1 ) (0,1) (0,1)。softmax限界后的形式为:
π ( a ∣ s , θ ) = e h ( s , a , θ ) ∑ a ′ ∈ A e h ( s , a ′ , θ ) \pi(a|s, \theta) = \frac{e^{h(s, a, \theta)}}{\textstyle\sum_{a' \in \mathcal{A}} e^{h(s, a', \theta)}} π(as,θ)=aAeh(s,a,θ)eh(s,a,θ)
其中, h ( s , a , θ ) h(s, a, \theta) h(s,a,θ)类似于特征函数,具体由神经网络确定。

推导:
已知 d ln ⁡ x d x = 1 x \frac{\mathrm{d} \ln x}{\mathrm{d} x} = \frac{1}{x} dxdlnx=x1,则 ∇ ln ⁡ f ( x ) = ∇ f ( x ) f ( x ) \nabla \ln f(x) = \frac{\nabla f(x)}{f(x)} lnf(x)=f(x)f(x),故有: ∇ θ ln ⁡ π ( a ∣ s , θ ) = ∇ θ π ( a ∣ s , θ ) π ( a ∣ s , θ ) \nabla_\theta \ln \pi(a|s, \theta) = \frac{\nabla_\theta \pi(a|s, \theta)}{\pi(a|s, \theta)} θlnπ(as,θ)=π(as,θ)θπ(as,θ)
进一步地, π \pi π的梯度可以计算为: ∇ θ π ( a ∣ s , θ ) = π ( a ∣ s , θ ) ∇ θ ln ⁡ π ( a ∣ s , θ ) {\nabla_\theta \pi(a|s, \theta)} = {\pi(a|s, \theta)} \nabla_\theta \ln \pi(a|s, \theta) θπ(as,θ)=π(as,θ)θlnπ(as,θ)
image.png

🟦REINFORCE

策略梯度(PG)方法基于梯度上升方法最大化目标函数:
θ t + 1 = θ t + α E [ ∇ θ ln ⁡ π ( A ∣ S , θ t ) q π ( S , A ) ] \theta_{t+1} = \theta_t + \alpha \mathbb{E} \big[ \nabla_\theta \ln\pi (A|S, \theta_t) q_\pi(S, A) \big] θt+1=θt+αE[θlnπ(AS,θt)qπ(S,A)]

实际中,通过随机采样的方式估计期望与 q π ( s t , a t ) q_\pi(s_t, a_t) qπ(st,at),有:
θ t + 1 = θ t + α ∇ θ ln ⁡ π ( a t ∣ s t , θ t ) q t ( s t , a t ) \theta_{t+1} = \theta_t + \alpha \nabla_\theta \ln\pi (a_t|s_t, \theta_t) q_t(s_t, a_t) θt+1=θt+αθlnπ(atst,θt)qt(st,at)

注意: A ∼ π ( A ∣ S , θ ) A\sim\pi(A|S,\theta) Aπ(AS,θ) a t a_t at的采样依赖于状态 s t s_t st下的策略 π ( θ t ) \pi(\theta_t) π(θt),因此策略梯度是on-policy方法。

估计 q π ( s t , a t ) q_\pi(s_t,a_t) qπ(st,at)有两种方法:

  • 蒙特卡洛(MC):REINFORCE(策略梯度的代表性算法)
  • 时序差分(TD):Actor-Critic系列算法(见后续博文)

REINFORCE算法步骤(伪代码):
初始化: π ( a ∣ s , θ ) \pi(a|s, \theta) π(as,θ) γ ∈ ( 0 , 1 ) \gamma \in (0,1) γ(0,1) α > 0 \alpha >0 α>0
目标:最大化 J ( θ ) J(\theta) J(θ)
步骤:在第 k k k次迭代中,选择策略 π ( θ k ) \pi(\theta_k) π(θk)的起始状态 s 0 s_0 s0,设其episode为 { s 0 , a 0 , r 1 , ⋯   , s T − 1 , a T − 1 , r T } \{ s_0, a_0, r_1, \cdots, s_{T-1}, a_{T-1}, r_T \} {s0,a0,r1,,sT1,aT1rT}

  • 在每个时间步 t = 0 , 1 , ⋯   , T − 1 t=0,1,\cdots,T-1 t=0,1,,T1
    • 值更新(蒙特卡洛方法): q t ( s t , a t ) = ∑ k = t + 1 T γ k − t − 1 r k q_t(s_t,a_t) = \textstyle \sum_{k=t+1}^T \gamma^{k-t-1} r_k qt(st,at)=k=t+1Tγkt1rk
    • 策略更新:更新参数 θ t + 1 \theta_{t+1} θt+1,公式见上
      • *注意:蒙特卡洛是offline的,需要整个episode的数据,所以这里更新完参数后不立即使用策略去采集数据
  • θ k = θ T \theta_k = \theta_T θk=θT,在下次迭代中生成下一组episode的数据

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/301577.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

android的求职APP 前端+后端

一 项目名称 基于android的求职APP&#xff0c;包含前台和后台管理系统的&#xff0c;前端主要移动端&#xff0c;应聘者注册账号&#xff0c;然后登陆&#xff0c;完善自己的简历&#xff0c;然后根据自己的需要投递岗位&#xff0c;查看面试邀请&#xff0c;后台主要维护数据…

听GPT 讲Rust源代码--compiler(34)

File: rust/compiler/rustc_middle/src/ty/print/mod.rs 在Rust源代码中&#xff0c;文件rust/compiler/rustc_middle/src/ty/print/mod.rs的作用是定义了打印类型和其他相关信息的功能。 具体来说&#xff0c;该文件中定义了三个trait&#xff0c;分别为Print<tcx>、Pri…

Java_特殊文件

一、属性文件 1.1 特殊文件概述 前面学习了IO流&#xff0c;知道IO流是用来读、写文件中的数据。但是接触到的文件都是普通的文本文件&#xff0c;普通的文本文件里面的数据是没有任何格式规范的&#xff0c;用户可以随意编写&#xff0c;如下图所示。 像这种普通的文本文件…

Selenium教程08:文件的上传+下载的示例练习

1.上传李白.txt文件&#xff0c;这里使用的send_keys方法操作&#xff0c;而不是click点击操作&#xff0c;因为使用点击操作之后&#xff0c;Selenium中没有方法对.exe程序操作&#xff0c;它只能对web网页自动化操作。 # Author : 小红牛 # 微信公众号&#xff1a;WdPython…

web前端开发技术复习问答题

目录 1.简述常见单标签和双标签有哪些&#xff1f; 2.常见块级元素和行级元素有哪些&#xff1f; 3.简述常见的列表有哪些&#xff1f;他们有什么区别&#xff1f; 4.简述超链接的href属性值如何设置&#xff1f;有什么区别 5.CSS基本语法 6. css中常见的引入方式有几种&…

AIGC-无人直播系统技术源头

AIGC-无人直播系统技术&#xff0c;作为当今科技领域的一项重要创新&#xff0c;正在引领着直播行业迈向更高的境界。那么&#xff0c;究竟是什么推动了这项技术的发展呢&#xff1f; 首先&#xff0c;我们不得不提到人工智能&#xff08;AI&#xff09;这一前沿技术的发展。随…

【数据库】CRUD常用函数UNION 和 UNION ALL

文章目录 一、CRUD二、函数2.1 字符函数 (Character Functions):2.2 数字函数 (Numeric Functions):2.3 日期函数 (Date Functions):2.4 流程控制函数:2.5 聚合函数: 三、UNION 和 UNION ALL3.1 UNION&#xff1a;3.2 UNION ALL3.3 注意事项 一、CRUD CRUD 是指数据库操作的四…

Qt/QML编程学习之心得:QProcess进程创建(27)

Qt除了线程Thread,进程也有支持类,那就是QProcess。 可以看出,这个类很大,支持的内容也很多。最简单的使用如: myParam << QString("-param hello") ; bool bRes = QProcess::startDetached("/usr/bin/myApplication", myParam);要启动进程,主…

Vue-4、单向数据绑定与双向数据绑定

1、单向数据绑定 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>数据绑定</title><!--引入vue--><script type"text/javascript" src"https://cdn.jsdelivr.net/npm/…

机器学习(四) -- 模型评估(2)

系列文章目录 机器学习&#xff08;一&#xff09; -- 概述 机器学习&#xff08;二&#xff09; -- 数据预处理&#xff08;1-3&#xff09; 机器学习&#xff08;三&#xff09; -- 特征工程&#xff08;1-2&#xff09; 机器学习&#xff08;四&#xff09; -- 模型评估…

springboot 物业管理系统

springboot mysql mybatisthymeleaf 基础信息管理 房屋信息 用户信息 业主信息 租房信息 公告管理 日常管理 财务管理

Linux环境vscode clang-format格式化:vscode clang format command is not available

问题现象 vscode安装了clang-format插件&#xff0c;但是使用就报错 问题原因 设置中配置的clang-format插件工具路径不正确。 解决方案 确认本地安装了clang-format工具&#xff1a;终端输入clang-format&#xff08;也可能是clang-format-13等版本&#xff0c;建议tab自…

qt-C++笔记之QProcess

qt-C笔记之QProcess code review! 文章目录 qt-C笔记之QProcess一.示例&#xff1a;QProcess来执行系统命令ls -l命令并打印出结果说明 二.示例&#xff1a;QProcess来执行系统命令ls -l命令并打印出结果&#xff0c;代码进一步丰富三.示例&#xff1a;使用 QProcess 在 Qt 中…

SQL 基础知识点

1. 数据库相关术语 数据库&#xff08;database&#xff09;&#xff1a;保存有组织的数据的容器&#xff08;通常是一个文件或一组文件&#xff09;。数据表&#xff08;table&#xff09; &#xff1a;某种特定类型数据的结构化清单。模式&#xff08;schema&#xff09;&am…

“数据要素×”正式来袭|美创“全栈能力、深入场景”保障数据价值安全释放

千呼万唤&#xff0c;1月4日&#xff0c;国家数据局等17部门联合印发的《“数据要素”三年行动计划&#xff08;2024—2026年&#xff09;》&#xff08;下称《三年行动计划》&#xff09;正式发布&#xff01; 作为国家数据局成立以来公开发布的首个重磅文件&#xff0c;《三年…

服务器迁移上云

一、服务器迁移上云 1、服务器迁移概念&#xff1a; 服务器迁移一般来说是将物理服务器从一个地点&#xff08;物理机房&#xff09;移动到另一个地点&#xff0c;或将数据从一台服务器移动到另一台服务器的过程。 物理服务器迁移场景&#xff1a; ● 机房搬迁&#xff1a;…

跨境电商企业客户服务优化指南:关键步骤与实用建议

随着全球经济一体化的加强&#xff0c;跨境电子商务产业在过去几年蓬勃发展。但是&#xff0c;为应对激烈竞争&#xff0c;提供全方面的客户服务成为了跨境电子商务卖家在市场中获得优势的关键因素之一。本文将介绍跨境电商企业优化客户服务有哪些步骤&#xff1f;以助力企业提…

图形化少儿编程的优点、现状以及未来发展趋势

随着科技的不断发展&#xff0c;越来越多的儿童开始接触编程。图形化少儿编程作为一门新兴的编程教育方式&#xff0c;越来越受到家长和教育者的关注。6547网将探讨图形化少儿编程的优点、现状以及未来发展趋势。 一、图形化少儿编程的优点 图形化少儿编程的最大优点在于其简单…

Unity | 渡鸦避难所-6 | 有限状态机控制角色行为逻辑

1 有限状态机简介 有限状态机&#xff08;英语&#xff1a;finite-state machine&#xff0c;缩写&#xff1a;FSM&#xff09;&#xff0c;简称状态机&#xff0c;是表示有限个状态以及在这些状态之间的转移和动作等行为的数学计算模型 在游戏开发中应用有限状态机&#xff…

(偏门)LINUX挂载硬盘等命令报错:READ FPDMA QUEUED

记录一个比较偏门的问题&#xff1a; 在linux中查看硬盘挂载情况&#xff1a; fdisk -l或创建分区&#xff1a; fdisk /dev/sdbgdisk /dev/sdb时报错&#xff1a; READ FPDMA QUEUED 或 WRITE FPDMA QUEUED 构建文件系统、挂载分区时还会卡死。 看网上的解决办法关闭NCQ&am…