大数据 Yarn - 资源调度框架

Hadoop主要是由三部分组成,除了前面我讲过的分布式文件系统HDFS、分布式计算框架MapReduce,还有一个是分布式集群资源调度框架Yarn。

但是Yarn并不是随Hadoop的推出一开始就有的,Yarn作为分布式集群的资源调度框架,它的出现伴随着Hadoop的发展,使Hadoop从一个单一的大数据计算引擎,成为一个集存储、计算、资源管理为一体的完整大数据平台,进而发展出自己的生态体系,成为大数据的代名词。

所以在我们开始聊Yarn的实现原理前,有必要看看Yarn发展的过程,这对你理解Yarn的原理以及为什么被称为资源调度框架很有帮助。

这个跟上一篇架构的文章一样,如果想真正搞懂一件事,必须对这件事的历史发展了解清楚,只有了解了历史,才能把握前进的方向。

先回忆一下我们学习的MapReduce的架构,在MapReduce应用程序的启动过程中,最重要的就是要把MapReduce程序分发到大数据集群的服务器上,在Hadoop 1中,这个过程主要是通过TaskTracker和JobTracker通信来完成。

这个方案有什么缺点吗?

这种架构方案的主要缺点是,服务器集群资源调度管理和MapReduce执行过程耦合在一起,如果想在当前集群中运行其他计算任务,比如Spark或者Storm,就无法统一使用集群中的资源了。

在Hadoop早期的时候,大数据技术就只有Hadoop一家,这个缺点并不明显。但随着大数据技术的发展,各种新的计算框架不断出现,我们不可能为每一种计算框架部署一个服务器集群,而且就算能部署新集群,数据还是在原来集群的HDFS上。所以我们需要把MapReduce的资源管理和计算框架分开,这也是Hadoop 2最主要的变化,就是将Yarn从MapReduce中分离出来,成为一个独立的资源调度框架。

Yarn是“Yet Another Resource Negotiator”的缩写,字面意思就是“另一种资源调度器”。事实上,在Hadoop社区决定将资源管理从Hadoop 1中分离出来,独立开发Yarn的时候,业界已经有一些大数据资源管理产品了,比如Mesos等,所以Yarn的开发者索性管自己的产品叫“另一种资源调度器”。这种命名方法并不鲜见,曾经名噪一时的Java项目编译工具Ant就是“Another Neat Tool”的缩写,意思是“另一种整理工具”。

在这里插入图片描述
Yarn包括两个部分:一个是资源管理器(Resource Manager),一个是节点管理器(Node Manager)。这也是Yarn的两种主要进程:ResourceManager进程负责整个集群的资源调度管理,通常部署在独立的服务器上;NodeManager进程负责具体服务器上的资源和任务管理,在集群的每一台计算服务器上都会启动,基本上跟HDFS的DataNode进程一起出现。

具体说来,资源管理器又包括两个主要组件:调度器和应用程序管理器。

调度器其实就是一个资源分配算法,根据应用程序(Client)提交的资源申请和当前服务器集群的资源状况进行资源分配。Yarn内置了几种资源调度算法,包括Fair Scheduler、Capacity Scheduler等,你也可以开发自己的资源调度算法供Yarn调用

Yarn进行资源分配的单位是容器(Container),每个容器包含了一定量的内存、CPU等计算资源,默认配置下,每个容器包含一个CPU核心。容器由NodeManager进程启动和管理,NodeManger进程会监控本节点上容器的运行状况并向ResourceManger进程汇报。

应用程序管理器负责应用程序的提交、监控应用程序运行状态等。应用程序启动后需要在集群中运行一个ApplicationMaster,ApplicationMaster也需要运行在容器里面。每个应用程序启动后都会先启动自己的ApplicationMaster,由ApplicationMaster根据应用程序的资源需求进一步向ResourceManager进程申请容器资源,得到容器以后就会分发自己的应用程序代码到容器上启动,进而开始分布式计算。

我们以一个MapReduce程序为例,来看一下Yarn的整个工作流程。

  • 1.我们向Yarn提交应用程序,包括MapReduce ApplicationMaster、我们的MapReduce程序,以及MapReduce Application启动命令。

  • 2.ResourceManager进程和NodeManager进程通信,根据集群资源,为用户程序分配第一个容器,并将MapReduce ApplicationMaster分发到这个容器上面,并在容器里面启动MapReduce ApplicationMaster。

  • 3.MapReduce ApplicationMaster启动后立即向ResourceManager进程注册,并为自己的应用程序申请容器资源。

  • 4.MapReduce ApplicationMaster申请到需要的容器后,立即和相应的NodeManager进程通信,将用户MapReduce程序分发到NodeManager进程所在服务器,并在容器中运行,运行的就是Map或者Reduce任务。

  • 5.Map或者Reduce任务在运行期和MapReduce ApplicationMaster通信,汇报自己的运行状态,如果运行结束,MapReduce ApplicationMaster向ResourceManager进程注销并释放所有的容器资源。

MapReduce如果想在Yarn上运行,就需要开发遵循Yarn规范的MapReduce ApplicationMaster,相应地,其他大数据计算框架也可以开发遵循Yarn规范的ApplicationMaster,这样在一个Yarn集群中就可以同时并发执行各种不同的大数据计算框架,实现资源的统一调度管理。

细心的你可能会发现,我在今天文章开头的时候提到Hadoop的三个主要组成部分的时候,管HDFS叫分布式文件系统,管MapReduce叫分布式计算框架,管Yarn叫分布式集群资源调度框架

为什么HDFS是系统,而MapReduce和Yarn则是框架?

框架在架构设计上遵循一个重要的设计原则叫“依赖倒转原则”,依赖倒转原则是高层模块不能依赖低层模块,它们应该共同依赖一个抽象,这个抽象由高层模块定义,由低层模块实现。

所谓高层模块和低层模块的划分,简单说来就是在调用链上,处于前面的是高层,后面的是低层。我们以典型的Java Web应用举例,用户请求在到达服务器以后,最先处理用户请求的是Java Web容器,比如Tomcat、Jetty这些,通过监听80端口,把HTTP二进制流封装成Request对象;然后是Spring MVC框架,把Request对象里的用户参数提取出来,根据请求的URL分发给相应的Model对象处理;再然后就是我们的应用程序,负责处理用户请求,具体来看,还会分成服务层、数据持久层等。

在这个例子中,Tomcat相对于Spring MVC就是高层模块,Spring MVC相对于我们的应用程序也算是高层模块。我们看到虽然Tomcat会调用Spring MVC,因为Tomcat要把Request交给Spring MVC处理,但是Tomcat并没有依赖Spring MVC,Tomcat的代码里不可能有任何一行关于Spring MVC的代码。

那么,Tomcat如何做到不依赖Spring MVC,却可以调用Spring MVC?如果你不了解框架的一般设计方法,这里还是会感到有点小小的神奇是不是?

秘诀就是Tomcat和Spring MVC都依赖J2EE规范,Spring MVC实现了J2EE规范的HttpServlet抽象类,即DispatcherServlet,并配置在web.xml中。这样,Tomcat就可以调用DispatcherServlet处理用户发来的请求。

同样Spring MVC也不需要依赖我们写的Java代码,而是通过依赖Spring MVC的配置文件或者Annotation这样的抽象,来调用我们的Java代码。

所以,Tomcat或者Spring MVC都可以称作是框架,它们都遵循依赖倒转原则。

现在我们再回到MapReduce和Yarn。实现MapReduce编程接口、遵循MapReduce编程规范就可以被MapReduce框架调用,在分布式集群中计算大规模数据;实现了Yarn的接口规范,比如Hadoop 2的MapReduce,就可以被Yarn调度管理,统一安排服务器资源。所以说,MapReduce和Yarn都是框架。

相反地,HDFS就不是框架,使用HDFS就是直接调用HDFS提供的API接口,HDFS作为底层模块被直接依赖。

小结

Yarn作为一个大数据资源调度框架,调度的是大数据计算引擎本身。它不像MapReduce或Spark编程,每个大数据应用开发者都需要根据需求开发自己的MapReduce程序或者Spark程序。而现在主流的大数据计算引擎所使用的Yarn模块,也早已被这些计算引擎的开发者做出来供我们使用了。作为普通的大数据开发者,我们几乎没有机会编写Yarn的相关程序。但是,这是否意味着只有大数据计算引擎的开发者需要基于Yarn开发,才需要理解Yarn的实现原理呢?

恰恰相反,我认为理解Yarn的工作原理和架构,对于正确使用大数据技术,理解大数据的工作原理,是非常重要的。在云计算的时代,一切资源都是动态管理的,理解这种动态管理的原理对于理解云计算也非常重要。Yarn作为一个大数据平台的资源管理框架,简化了应用场景,对于帮助我们理解云计算的资源管理很有帮助。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/301036.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Cache伪共享

伪共享 什么是伪共享 为了解决计算机系统中主内存与CPU之间运行速度差问题,会在CPU与主内存之间添加一级或者多级高速缓冲存储器(Cache)。 这个Cache一般是被集成到CPU内部的,所以也叫CPU Cache。 在Cache内部是按行存储的,其中每一行称为…

springboot 房屋租赁系统

spring boot mysql mybatis 前台后端

【二】使用create-vue创建vue3的helloworld项目(推荐)

create-vue 官网:快速上手 | Vue.js create-vue 是 Vue3 的专用脚手架,使用 vite 创建 Vue3 的项目,也可以选择安装需要的各种插件,使用更简单。 1、使用方式 npm create vuelatest这个命令会安装和执行 create-vue&#xff0…

位运算--二进制中1的个数(含常见的二进制运算操作)

目录 二进制中1的个数操作 1 查看第k位的数字是否为1操作2 lowbit操作 解题代码: 原题链接: 二进制中1的个数 给定一个长度为 n 的数列,请你求出数列中每个数的二进制表示中 1 的个数。 输入格式 第一行包含整数 n 。 第二行包含 n 个整数&#xff0c…

聚道云软件连接器助力某新能源行业公司实现付款流程自动化

客户介绍: 某新能源行业公司是一家集研发、生产、销售新能源汽车于一体的综合性新能源企业。公司业务遍及全球多个国家和地区,拥有庞大的供应商网络和采购需求。 添加图片注释,不超过 140 字(可选) 客户痛点&#xf…

Unity中Shader面片一直面向摄像机

文章目录 前言一、实现思路1、 我们要实现模型面片一直跟着摄像机旋转,那么就需要用到旋转矩阵2、确定 原坐标系 和 目标坐标系3、确定旋转后坐标系基向量 二、确定旋转后 坐标系基向量 在 原坐标系 下的值1、Z轴基向量2、假设Y轴基向量 和 世界空间下 的Y轴方向一致…

科学的摇篮 - 贝尔实验室

AT&T贝尔实验室(AT&T Bell Laboratories)是美国电信公司AT&T的研究与开发部门,成立于1925年。它在20世纪的许多年里一直是科学与技术创新的重要中心,做出了众多重大贡献,并为多项科技成就奠定了基础。以下…

ReentrantLock底层原理学习二

以 ReentrantLock 作为切入点,来看看在这个场景中是如何使用 AQS 来实现线程的同步的 ReentrantLock 的时序图 调用 ReentrantLock 中的 lock()方法,源码的调用过程我使用了时序图来展现。ReentrantLock.lock() 这个是 reentrantLock 获取锁的入口 pu…

C++流媒体服务器 ZLMediaKit框架ZLToolKit源码解读

ZLMediaKit是国人开发的开源C流媒体服务器,同SRS一样是主流的流媒体服务器。 ZLToolKit是基于C11的高性能服务器框架,和ZLMediaKit是同一个作者,ZLMediaKit正是使用该框架开发的。 ZLMediaKit开源地址:https://github.com/ZLMedi…

SpringMVC-@RequestMapping注解

0. 多个方法对应同一个请求 RequestMapping("/")public String toIndex(){return "index";}RequestMapping("/")public String toIndex2(){return "index";}这种情况是不允许的,会报错。 1. 注解的功能 RequestMapping注…

C++面试宝典第15题:最长回文子串

题目 回文是一个正读和反读都相同的字符串,比如:"aba"是回文,而"abc"不是回文。现给定一个字符串s,找出s中最长的回文子串(可能有多个最长的,找出一个即可)。 示例 1: 输入: "babad" 输出: "bab"("aba" 也是一个有…

总420+,专业120+南京大学851信号与系统电子信息考研经验通信,电子信息

今年考研数学130,专业课120,总分420顺利被南京大学电通录取,梦圆南大,这一年的复习有过迷茫,有过犹豫,最后都坚持过来了,总结一下自己的复习经验,希望对大家有所帮助。数学 5-8月数…

MySQL-存储引擎

简介:存储引擎是存储数据,建立索引,更新/查询数据等技术的实现方式。存储引擎是基于表的,而不是基于库的, (同一个数据库的不同表可以选择不同的存储引擎) 所以存储引擎也可被称为表类型。 我们输入 SHOW CREATE TAB…

操作系统内存碎片

大家好,我叫徐锦桐,个人博客地址为www.xujintong.com,github地址为https://github.com/jintongxu。平时记录一下学习计算机过程中获取的知识,还有日常折腾的经验,欢迎大家访问。 一、前言 内存碎片是指无法被利用的内…

AArch64 memory management学习(一)

提示 该博客主要为个人学习,通过阅读官网手册整理而来(个人觉得阅读官网的英文文档非常有助于理解各个IP特性)。若有不对之处请参考参考文档,以官网参考文档为准。AArch64 memory management学习一共分为两章,这是第一…

国科大计算机体系结构期末考试——更新中

题型一、第二章的画图 给一个逻辑表达式,画出晶体管级别的电路图 cmos电路的基本电路: 与非门的功能是对多个输入信号进行逻辑与操作,然后对结果进行取反。 或非门的功能是对多个输入信号进行逻辑或操作,然后对结果进行取反。 …

【算法提升】LeetCode每五日一总结【01/01--01/05】

文章目录 LeetCode每五日一总结【01/01--01/05】2023/12/31今日数据结构&#xff1a;二叉树的前/中/后 序遍历<非递归> 2024/01/01今日数据结构&#xff1a;二叉树的 前/中/后 序遍历 三合一代码<非递归>今日数据结构&#xff1a;二叉树的 前/中/后 序遍历 三合一代…

126基于matlab的孪生支持向量机(Twin support vector machine,TWSVM)是SVM的一种变形算法

基于matlab的孪生支持向量机&#xff08;Twin support vector machine,TWSVM&#xff09;是SVM的一种变形算法。该采用WSVM进行二分类&#xff0c;程序已注释数据可更换自己的&#xff0c;程序已调通&#xff0c;可直接运行。 126matlabTWSVM模式识别 (xiaohongshu.com)

Nginx location 配置 - Part 2

接上文 链接: Nginx 简介和入门 - part1 上文 我们简单地在 nginx 创建了3个虚拟主机&#xff0c; 虽然这个3个主机都是用占用80端口 但是我们可以用不同的域名来实现区分访问3台虚拟主机。 但是&#xff0c; 实际项目上&#xff0c; 我们更加多地会使用location 配置而不是…

20240107查看Android11下移远的4G模块EC20在Firefly的AIO-3399J开发板跑通时的相关服务

20240107查看Android11下移远的4G模块EC20在Firefly的AIO-3399J开发板跑通时的相关服务 2024/1/7 11:24 缘起&#xff1a;友善之臂的SDK&#xff1a;rk3399-android-11-r20211216.tar.xz可以跑通EC20&#xff0c;但是Toybrick的不行&#xff01; 同样是Andrid11&#xff0c;因此…