1982-2022年GIMMS 标准化差异植被指数

GIMMS 标准化差异植被指数 1982-2022¶

PKU GIMMS 归一化植被指数数据集(PKU GIMMS NDVI,版本 1.2)提供了从 1982 年到 2022 年以半个月为间隔、分辨率为 1/12° 的一致的全球 NDVI 数据。其主要目标是解决现有领域中普遍存在的关键不确定性。全球长期 NDVI 数据集,特别是减轻 NOAA 卫星轨道漂移和 AVHRR 传感器退化的影响。前言 – 人工智能教程

该数据集是通过利用特定于生物群落的反向传播神经网络 (BPNN) 模型、利用 GIMMS NDVI3g 产品并从 360 万个高质量全球 NDVI 样本池中提取而生成的。为了将其时间覆盖范围扩展到 2022 年,采用了像素级随机森林融合方法,集成了 MODIS NDVI (MOD13C1) 的数据。值得注意的是,PKU GIMMS NDVI 数据集在针对 Landsat NDVI 样本进行评估时表现出令人印象深刻的准确性。它有效消除了卫星轨道漂移和传感器退化的不利影响,展示了与 MODIS NDVI 数据有关像素值和全球植被趋势的强大时间一致性。因此,该数据集作为全球变化研究领域的基础资源具有巨大的潜力。

该数据集有两个版本可供下载:一个完全依赖于 1982 年至 2015 年期间的 AVHRR 数据,另一个与 MODIS NDVI 合并,涵盖 1982 年至 2022 年的数据。强烈鼓励用户使用质量控制(QC )数据集中提供的层以增强数据可靠性。此外,建议在趋势分析过程中按照既定方法应用阈值(例如0.1)去除稀疏植被(Zhou et al., 2001;Liu et al., 2016)。

GIMMS (Global Inventory Modeling and Mapping Studies) 归一化植被指数是一种用于监测全球植被变化的遥感指数。它基于卫星测量的地表反射率数据,通常使用NOAA (National Oceanic and Atmospheric Administration) 的AVHRR (Advanced Very High Resolution Radiometer) 卫星数据进行计算。

GIMMS 归一化植被指数通过计算每个像素点的归一化植被指数值,来表示该地区的植被生长状况。归一化植被指数(Normalized Difference Vegetation Index, NDVI)是通过测量植被对红光和近红外辐射的反射率来计算的。

GIMMS 归一化植被指数可用于分析植被的季节性变化、长期趋势和异常事件,比如干旱、火灾等。它被广泛应用于气候变化研究、环境监测、农业管理和自然资源管理等领域。

GIMMS 归一化植被指数可以提供全球范围内的植被相关数据,有助于了解植被变化与气候变化的关联,以及对环境和生态系统的影响。

GIMMS归一化植被指数(Normalized Difference Vegetation Index,NDVI)是一种用于评估植被光合活动和生长状态的遥感指标。它通过比较不同波段的反射率来计算,将红光(波长为0.6-0.7微米)和近红外(波长为0.7-1.1微米)波段的反射率之差进行归一化。

归一化植被指数的计算公式为:NDVI = (NIR - RED) / (NIR + RED),其中,NIR代表近红外波段的反射率,RED代表红光波段的反射率。计算结果为-1到1之间的数值,表示植被的绿度和生长状况。

当NDVI值接近1时,表示植被茂盛,光合作用活跃;当NDVI值接近0时,表示地表覆盖物为裸土或水体;当NDVI值接近-1时,表示地表为岩石等非植被覆盖物。因此,NDVI可以用于定量分析植被的分布、类型和状况。

GIMMS是一个全球植被遥感数据集,它基于NOAA卫星的AVHRR数据,经过处理和归一化处理得到归一化植被指数数据。GIMMS数据集提供了1981年至今的连续时间序列,用于研究全球范围内的植被变化和长期趋势。

通过分析GIMMS归一化植被指数数据,可以了解植被的季节性变化、年际和长期趋势,以及对自然和人为因素的响应。这对于监测气候变化、评估环境状况、农业管理和自然资源保护等方面都具有重要意义。

后期处理¶

由于地球引擎文件名中不允许使用句点,因此数据集被重命名,因此 v1.2 被重命名为 v12,并且日期被添加为集合中每个图像的开始日期。

数据集引用¶
Muyi Li, Sen Cao, Zaichun Zhu, Zhe Wang, Ranga B. Myneni, & Shilong Piao. (2023). Spatiotemporally consistent global dataset of the GIMMS Normalized
Difference Vegetation Index (PKU GIMMS NDVI) from 1982 to 2022 (V1.2) (V1.2) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.8253971
引文¶
Li, Muyi, Sen Cao, Zaichun Zhu, Zhe Wang, Ranga B. Myneni, and Shilong Piao. "Spatiotemporally consistent global dataset of the GIMMS Normalized
Difference Vegetation Index (PKU GIMMS NDVI) from 1982 to 2022." Earth System Science Data 15, no. 9 (2023): 4181-4203.

 

地球引擎片段¶
var avhrr_modis_consolidated = ee.ImageCollection("projects/sat-io/open-datasets/PKU-GIMMS-NDVI/AVHRR_MODIS_CONSOLIDATED");
var avhrr_solely = ee.ImageCollection("projects/sat-io/open-datasets/PKU-GIMMS-NDVI/AVHRR_SOLELY");
print(avhrr_modis_consolidated.size())
print(avhrr_solely.size())

var ndviColorPalette = [
  "#FF0000", // Red
  "#FF4500", // Orange
  "#FFFF00", // Yellow
  "#9ACD32", // Pale green
  "#008000", // Green
  "#006400", // Dark green
];

Map.addLayer(ee.Image(avhrr_modis_consolidated.sort('system:time_start',false).first()).select(['b1']).multiply(0.001),{min:0,max:1,palette:ndviColorPalette},'GIMMS NDVI AVHRR MODIS CONSOLIDATED')
Map.addLayer(ee.Image(avhrr_solely.sort('system:time_start',false).first()).select(['b1']).multiply(0.001),{min:0,max:1,palette:ndviColorPalette},'GIMMS NDVI AVHRR SOLELY')

示例代码:https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:agriculture-vegetation-林业/GIMMS-NDVI-1982-2022

执照¶

本作品根据 Creative Commons Attribution 4.0 International 许可证获得许可。

创建者:Li、Muyi、Sen Cao、Zaichun Zhu、Zhe Wang、Ranga B. Myneni 和 Shilong Piao

GEE 策展人:Samapriya Roy

关键词:北大GIMMS NDVI、陆地卫星、MODIS、反向传播神经网络

GEE 最后更新:2023-10-10

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/298759.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

BMS电池管理系统带充放电控制过流过压保护

2.4G无线采集BMS开发板(主从一体) 全新升级 (赠送上位机源码TTL 上位机,可以改成自己想要的界面) 12串电池TTL上位机 CAN通信上位机源码有偿开源,供项目二次开发。 增加STM32平台 USB转TTL通信 CAN通信 增加…

C++面向对象核心-继承

1、继承 1.1 概念 继承是面向对象的三大特性之一,体现了代码复用的思想。 继承就是在一个已存在的类的基础上建立一个新的类,并拥有其特性。 已存在的类被称为“基类”或者“父类”新建立的类被称为“派生类”或者“子类”对象间没有继承关系 #include &…

数据恢复与并发控制例题

例1: (1)重做(REDO):T1,T2,T3; 撤销(UNDO):T4。 (2)重做:T1,T2; 撤销:T3。 (3)重做:T1; 撤销:T2,T3. (4)重做:T1; 撤销…

手机上下载 Linux 系统

我们首先要下载 Ternux 点击下载以及vnc viewer (提取码:d9sX),需要魔法才行 下载完以后我们打开 Ternux 敲第一个命令 pkg upgrade 这个命令是用来跟新软件的 敲完命令就直接回车,如果遇到需要输入 Y/N 的地方全部输入 Y 下一步 #启动TMOE…

java SSM问卷调查系统myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

一、源码特点 java SSM问卷调查管理系统是一套完善的web设计系统(系统采用SSM框架进行设计开发,springspringMVCmybatis),对理解JSP java编程开发语言有帮助,系统具有完整的源代 码和数据库,系统主要采…

vite + vue3引入ant design vue 报错

npm install ant-design-vue --save下载插件并在main.ts 全局引入 报错 解决办法一: main.ts注释掉全局引入 模块按需引入 解决办法二 将package.json中的ant-design-vue的版本^4.0.0-rc.4改为 ^3.2.15版本 同时将将package-lock.json中的ant-design-vue的版本…

华为云服务器试用领取

系列文章目录 华为云服务器试用领取 领取的试用云服务器在哪 文章目录 系列文章目录介绍 介绍 我将会用该系列文章讲述如何在云服务器中安装大数据软件及其环境搭建。如有不足之处,还望指点。 本篇文章讲述的是华为云服务器的免费试用。 华为弹性云服务器 ECS 该云…

metaSPAdes,megahit,IDBA-UB:宏基因组装软件安装与使用

metaSPAdes,megahit,IDBA-UB是目前比较主流的宏基因组组装软件 metaSPAdes安装 GitHub - ablab/spades: SPAdes Genome Assembler #3.15.5的预编译版貌似有问题,使用源码安装试试 wget http://cab.spbu.ru/files/release3.15.5/SPAdes-3.15.5.tar.gz tar -xzf SP…

数据分析——快递电商

一、任务目标 1、任务 总体目的——对账 本项目解决同时使用多个快递发货,部分隔离区域出现不同程度涨价等情形下,如何快速准确核对账单的问题。 1、在订单表中新增一列【运费差异核对】来表示订单运费实际有多少差异,结果为数值。 2、将…

【书生·浦语大模型实战营02】《轻松玩转书生·浦语大模型趣味Demo》学习笔记

《轻松玩转书生浦语大模型趣味Demo》 1、InternLM-Chat-7B 智能对话:生成 300 字的小故事 本节中我们将使用InternLM-Chat-7B 模型部署一个智能对话 Demo。 1.1 环境准备 在InternStudio平台中选择 A100(1/4) 的配置,镜像选择 Cuda11.7-conda&#x…

idea中使用Lombok 失效,@Slf4j 找不到符号的解决办法

文章目录 一、前言二、问题排查和解决方案三、 其他解决方案3.1 另一种解决方案3.2 参考文章 一、前言 今天在一个多module工程中,新增了一个 springboot(版本 2.2.4.RELEASE) module,像往常一样,我引入了lombok依赖&…

电脑开启虚拟化如何查看自己的主机主板型号

问题描述 在使用virtualbox、vmware安装虚拟机的时候,需要本机电脑能够支持虚拟化。 但是不同厂家的主机(主板)幸好并不一致,所以需要先了解自己的电脑主板型号 操作方法 1、win r 键打开运行窗口,输入cmd并确定打开…

关于“Python”的核心知识点整理大全64

目录 20.2.15 确保项目的安全 settings.py 20.2.16 提交并推送修改 20.2.17 创建自定义错误页面 1. 创建自定义模板 500.html settings.py settings.py 注意 views.py 20.2.18 继续开发 往期快速传送门👆(在文章最后)&#xff1a…

大数据Doris(五十一):Colocation Join介绍

文章目录 Colocation Join介绍 一、原理 二、使用方式 1、建表 2、删表

【Java EE初阶七】多线程案例(生产者消费者模型)

1. 阻塞队列 队列是先进先出的一种数据结构; 阻塞队列,是基于队列,做了一些扩展,适用于多线程编程中; 阻塞队列特点如下: 1、是线程安全的 2、具有阻塞的特性 2.1、当队列满了时,就不能往队列里…

MATLAB插值函数

一、MATLAB插值函数概览 1)本节重点介绍的插值函数 MATLAB插值函数适用情况基础句式interp1 函数interp1 主要用于一维数据的插值interp1(x, y, x_interp, ‘linear’); 其中 x 和 y 是已知数据点,x_interp 是要插值的目标点。interp2 函数interp2 用于…

VS code的使用介绍

VS code的使用介绍 简介下载和安装常用的插件使用教程快捷键 集成Git未找到 Git。请安装 Git,或在 "git.path" 设置中配置。操作步骤打开文件夹初始化仓库文件版本控制状态提交文件到git打开git操作栏位 好用的插件ChineseDraw.io Integration实体关系 Gi…

SpringSecurity集成JWT实现后端认证授权保姆级教程-环境搭建篇

🍁 作者:知识浅谈,CSDN签约讲师,CSDN博客专家,华为云云享专家,阿里云专家博主 📌 擅长领域:全栈工程师、爬虫、ACM算法 💒 公众号:知识浅谈 🔥网站…

C++ UTF-8与GBK字符的转换 —基于Linux 虚拟机 (iconv_open iconv)

1、UTF-8 和 GBK 的区别 GBK:通常简称 GB (“国标”汉语拼音首字母),GBK 包含全部中文字符。 UTF-8 :是一种国际化的编码方式,包含了世界上大部分的语种文字(简体中文字、繁体中文字、英文、…

Android 15即将到来,或将推出5大新功能特性

Android15 OneUI电池优化 三星最近完成了对其所有设备的稳定版 One UI 6.0 更新的推出,引起了用户的极大兴奋。据新出现的互联网统计数据显示,即将发布的基于 Android 15 的 One UI 7 将通过优化电池和功耗来重新定义用户体验,这是一项具有突…