动态规划(不同路径1,不同路径2,整数拆分)

62.不同路径

力扣题目链接(opens new window)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:
在这里插入图片描述

输入:m = 3, n = 7
输出:28
示例 2:

输入:m = 2, n = 3
输出:3
解释: 从左上角开始,总共有 3 条路径可以到达右下角。

向右 -> 向右 -> 向下
向右 -> 向下 -> 向右
向下 -> 向右 -> 向右
示例 3:

输入:m = 7, n = 3
输出:28
示例 4:

输入:m = 3, n = 3
输出:6
提示:

1 <= m, n <= 100
题目数据保证答案小于等于 2 * 10^9

思路
#深搜
这道题目,刚一看最直观的想法就是用图论里的深搜,来枚举出来有多少种路径。

注意题目中说机器人每次只能向下或者向右移动一步,那么其实机器人走过的路径可以抽象为一棵二叉树,而叶子节点就是终点!

如图举例:
在这里插入图片描述
此时问题就可以转化为求二叉树叶子节点的个数,代码如下:

class Solution {
private:
    int dfs(int i, int j, int m, int n) {
        if (i > m || j > n) return 0; // 越界了
        if (i == m && j == n) return 1; // 找到一种方法,相当于找到了叶子节点
        return dfs(i + 1, j, m, n) + dfs(i, j + 1, m, n);
    }
public:
    int uniquePaths(int m, int n) {
        return dfs(1, 1, m, n);
    }
};

大家如果提交了代码就会发现超时了!

来分析一下时间复杂度,这个深搜的算法,其实就是要遍历整个二叉树。

这棵树的深度其实就是m+n-1(深度按从1开始计算)。

那二叉树的节点个数就是 2^(m + n - 1) - 1。可以理解深搜的算法就是遍历了整个满二叉树(其实没有遍历整个满二叉树,只是近似而已)

所以上面深搜代码的时间复杂度为O(2^(m + n - 1) - 1),可以看出,这是指数级别的时间复杂度,是非常大的。

#动态规划
机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

按照动规五部曲来分析:

确定dp数组(dp table)以及下标的含义
dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

确定递推公式
想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。

此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。

那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

dp数组的初始化
如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

所以初始化代码为:

for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;
确定遍历顺序
这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

举例推导dp数组
如图所示:
在这里插入图片描述

递归

class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        if m == 1 or n == 1:
            return 1
        return self.uniquePaths(m - 1, n) + self.uniquePaths(m, n - 1)

动态规划(版本一)

class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        # 创建一个二维列表用于存储唯一路径数
        dp = [[0] * n for _ in range(m)]
        
        # 设置第一行和第一列的基本情况
        for i in range(m):
            dp[i][0] = 1
        for j in range(n):
            dp[0][j] = 1
        
        # 计算每个单元格的唯一路径数
        for i in range(1, m):
            for j in range(1, n):
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
        
        # 返回右下角单元格的唯一路径数
        return dp[m - 1][n - 1]

动态规划(版本二)

class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        # 创建一个一维列表用于存储每列的唯一路径数
        dp = [1] * n
        
        # 计算每个单元格的唯一路径数
        for j in range(1, m):
            for i in range(1, n):
                dp[i] += dp[i - 1]
        
        # 返回右下角单元格的唯一路径数
        return dp[n - 1]

数论

class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        numerator = 1  # 分子
        denominator = m - 1  # 分母
        count = m - 1  # 计数器,表示剩余需要计算的乘积项个数
        t = m + n - 2  # 初始乘积项
        while count > 0:
            numerator *= t  # 计算乘积项的分子部分
            t -= 1  # 递减乘积项
            while denominator != 0 and numerator % denominator == 0:
                numerator //= denominator  # 约简分子
                denominator -= 1  # 递减分母
            count -= 1  # 计数器减1,继续下一项的计算
        return numerator  # 返回最终的唯一路径数

63. 不同路径 II

力扣题目链接(opens new window)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
在这里插入图片描述
网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:
在这里插入图片描述

入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2 解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
向右 -> 向右 -> 向下 -> 向下
向下 -> 向下 -> 向右 -> 向右
示例 2:
在这里插入图片描述

输入:obstacleGrid = [[0,1],[0,0]]
输出:1
提示:

m == obstacleGrid.length
n == obstacleGrid[i].length
1 <= m, n <= 100
obstacleGrid[i][j] 为 0 或 1

思路
这道题相对于62.不同路径 (opens new window)就是有了障碍。

第一次接触这种题目的同学可能会有点懵,这有障碍了,应该怎么算呢?

62.不同路径 (opens new window)中我们已经详细分析了没有障碍的情况,有障碍的话,其实就是标记对应的dp table(dp数组)保持初始值(0)就可以了。

动规五部曲:

确定dp数组(dp table)以及下标的含义
dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

确定递推公式
递推公式和62.不同路径一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。

但这里需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。

所以代码为:

if (obstacleGrid[i][j] == 0) { // 当(i, j)没有障碍的时候,再推导dp[i][j]
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
dp数组如何初始化
在62.不同路径 (opens new window)不同路径中我们给出如下的初始化:

vector<vector<int>> dp(m, vector<int>(n, 0)); // 初始值为0
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;

因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。

但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。

如图:
在这里插入图片描述
下标(0, j)的初始化情况同理。

所以本题初始化代码为:

vector<vector> dp(m, vector(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
注意代码里for循环的终止条件,一旦遇到obstacleGrid[i][0] == 1的情况就停止dp[i][0]的赋值1的操作,dp[0][j]同理

确定遍历顺序
从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。

代码如下:

for (int i = 1; i < m; i++) {
    for (int j = 1; j < n; j++) {
        if (obstacleGrid[i][j] == 1) continue;
        dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
    }
}

举例推导dp数组
拿示例1来举例如题:
在这里插入图片描述
对应的dp table 如图:

在这里插入图片描述

如果这个图看不懂,建议再理解一下递归公式,然后照着文章中说的遍历顺序,自己推导一下!

动规五部分分析完毕,对应C++代码如下:

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
	if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍,直接返回0
            return 0;
        vector<vector<int>> dp(m, vector<int>(n, 0));
        for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                if (obstacleGrid[i][j] == 1) continue;
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }
};

时间复杂度:O(n × m),n、m 分别为obstacleGrid 长度和宽度
空间复杂度:O(n × m)

动态规划(版本一)

class Solution:
    def uniquePathsWithObstacles(self, obstacleGrid):
        m = len(obstacleGrid)
        n = len(obstacleGrid[0])
        if obstacleGrid[m - 1][n - 1] == 1 or obstacleGrid[0][0] == 1:
            return 0
        dp = [[0] * n for _ in range(m)]
        for i in range(m):
            if obstacleGrid[i][0] == 0:  # 遇到障碍物时,直接退出循环,后面默认都是0
                dp[i][0] = 1
            else:
                break
        for j in range(n):
            if obstacleGrid[0][j] == 0:
                dp[0][j] = 1
            else:
                break
        for i in range(1, m):
            for j in range(1, n):
                if obstacleGrid[i][j] == 1:
                    continue
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
        return dp[m - 1][n - 1]

动态规划(版本二)

class Solution:
    def uniquePathsWithObstacles(self, obstacleGrid):
        m = len(obstacleGrid)  # 网格的行数
        n = len(obstacleGrid[0])  # 网格的列数
        
        if obstacleGrid[m - 1][n - 1] == 1 or obstacleGrid[0][0] == 1:
            # 如果起点或终点有障碍物,直接返回0
            return 0
        
        dp = [[0] * n for _ in range(m)]  # 创建一个二维列表用于存储路径数
        
        # 设置起点的路径数为1
        dp[0][0] = 1 if obstacleGrid[0][0] == 0 else 0
        
        # 计算第一列的路径数
        for i in range(1, m):
            if obstacleGrid[i][0] == 0:
                dp[i][0] = dp[i - 1][0]
        
        # 计算第一行的路径数
        for j in range(1, n):
            if obstacleGrid[0][j] == 0:
                dp[0][j] = dp[0][j - 1]
        
        # 计算其他位置的路径数
        for i in range(1, m):
            for j in range(1, n):
                if obstacleGrid[i][j] == 1:
                    continue
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
        
        return dp[m - 1][n - 1]  # 返回终点的路径数

动态规划(版本三)

class Solution:
    def uniquePathsWithObstacles(self, obstacleGrid):
        if obstacleGrid[0][0] == 1:
            return 0
        
        dp = [0] * len(obstacleGrid[0])  # 创建一个一维列表用于存储路径数
        
        # 初始化第一行的路径数
        for j in range(len(dp)):
            if obstacleGrid[0][j] == 1:
                dp[j] = 0
            elif j == 0:
                dp[j] = 1
            else:
                dp[j] = dp[j - 1]

        # 计算其他行的路径数
        for i in range(1, len(obstacleGrid)):
            for j in range(len(dp)):
                if obstacleGrid[i][j] == 1:
                    dp[j] = 0
                elif j != 0:
                    dp[j] = dp[j] + dp[j - 1]
        
        return dp[-1]  # 返回最后一个元素,即终点的路径数

动态规划(版本四)

class Solution:
    def uniquePathsWithObstacles(self, obstacleGrid):
        if obstacleGrid[0][0] == 1:
            return 0
        
        m, n = len(obstacleGrid), len(obstacleGrid[0])
        
        dp = [0] * n  # 创建一个一维列表用于存储路径数
        
        # 初始化第一行的路径数
        for j in range(n):
            if obstacleGrid[0][j] == 1:
                break
            dp[j] = 1

        # 计算其他行的路径数
        for i in range(1, m):
            if obstacleGrid[i][0] == 1:
                dp[0] = 0
            for j in range(1, n):
                if obstacleGrid[i][j] == 1:
                    dp[j] = 0
                else:
                    dp[j] += dp[j - 1]
        
        return dp[-1]  # 返回最后一个元素,即终点的路径数

动态规划(版本五)

class Solution:
    def uniquePathsWithObstacles(self, obstacleGrid):
        if obstacleGrid[0][0] == 1:
            return 0
        
        m, n = len(obstacleGrid), len(obstacleGrid[0])
        
        dp = [0] * n  # 创建一个一维列表用于存储路径数
        
        # 初始化第一行的路径数
        for j in range(n):
            if obstacleGrid[0][j] == 1:
                break
            dp[j] = 1

        # 计算其他行的路径数
        for i in range(1, m):
            if obstacleGrid[i][0] == 1:
                dp[0] = 0
            for j in range(1, n):
                if obstacleGrid[i][j] == 1:
                    dp[j] = 0
                    continue
                
                dp[j] += dp[j - 1]
        
        return dp[-1]  # 返回最后一个元素,即终点的路径数

343. 整数拆分

力扣题目链接(opens new window)

给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。

示例 1:

输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。
示例 2:

输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。
说明: 你可以假设 n 不小于 2 且不大于 58。

思路
看到这道题目,都会想拆成两个呢,还是三个呢,还是四个…

我们来看一下如何使用动规来解决。

#动态规划
动规五部曲,分析如下:

确定dp数组(dp table)以及下标的含义
dp[i]:分拆数字i,可以得到的最大乘积为dp[i]。

dp[i]的定义将贯彻整个解题过程,下面哪一步想不懂了,就想想dp[i]究竟表示的是啥!

确定递推公式
可以想 dp[i]最大乘积是怎么得到的呢?

其实可以从1遍历j,然后有两种渠道得到dp[i].

一个是j * (i - j) 直接相乘。

一个是j * dp[i - j],相当于是拆分(i - j),对这个拆分不理解的话,可以回想dp数组的定义。

那有同学问了,j怎么就不拆分呢?

j是从1开始遍历,拆分j的情况,在遍历j的过程中其实都计算过了。那么从1遍历j,比较(i - j) * j和dp[i - j] * j 取最大的。递推公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

也可以这么理解,j * (i - j) 是单纯的把整数拆分为两个数相乘,而j * dp[i - j]是拆分成两个以及两个以上的个数相乘。

如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。

所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});

那么在取最大值的时候,为什么还要比较dp[i]呢?

因为在递推公式推导的过程中,每次计算dp[i],取最大的而已。

dp的初始化
不少同学应该疑惑,dp[0] dp[1]应该初始化多少呢?

有的题解里会给出dp[0] = 1,dp[1] = 1的初始化,但解释比较牵强,主要还是因为这么初始化可以把题目过了。

严格从dp[i]的定义来说,dp[0] dp[1] 就不应该初始化,也就是没有意义的数值。

拆分0和拆分1的最大乘积是多少?

这是无解的。

这里我只初始化dp[2] = 1,从dp[i]的定义来说,拆分数字2,得到的最大乘积是1,这个没有任何异议!

确定遍历顺序
确定遍历顺序,先来看看递归公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。

所以遍历顺序为:

for (int i = 3; i <= n ; i++) {
    for (int j = 1; j < i - 1; j++) {
        dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
    }
}

注意 枚举j的时候,是从1开始的。从0开始的话,那么让拆分一个数拆个0,求最大乘积就没有意义了。

j的结束条件是 j < i - 1 ,其实 j < i 也是可以的,不过可以节省一步,例如让j = i - 1,的话,其实在 j = 1的时候,这一步就已经拆出来了,重复计算,所以 j < i - 1

至于 i是从3开始,这样dp[i - j]就是dp[2]正好可以通过我们初始化的数值求出来。

更优化一步,可以这样:

for (int i = 3; i <= n ; i++) {
    for (int j = 1; j <= i / 2; j++) {
        dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
    }
}

因为拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的。

例如 6 拆成 3 * 3, 10 拆成 3 * 3 * 4。 100的话 也是拆成m个近似数组的子数 相乘才是最大的。

只不过我们不知道m究竟是多少而已,但可以明确的是m一定大于等于2,既然m大于等于2,也就是 最差也应该是拆成两个相同的 可能是最大值。

那么 j 遍历,只需要遍历到 n/2 就可以,后面就没有必要遍历了,一定不是最大值。

至于 “拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的” 这个我就不去做数学证明了,感兴趣的同学,可以自己证明。

举例推导dp数组
举例当n为10 的时候,dp数组里的数值,如下:
在这里插入图片描述
以上动规五部曲分析完毕,C++代码如下:

class Solution {
public:
    int integerBreak(int n) {
        vector<int> dp(n + 1);
        dp[2] = 1;
        for (int i = 3; i <= n ; i++) {
            for (int j = 1; j <= i / 2; j++) {
                dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
            }
        }
        return dp[n];
    }
};

时间复杂度:O(n^2)
空间复杂度:O(n)
#贪心
本题也可以用贪心,每次拆成n个3,如果剩下是4,则保留4,然后相乘,但是这个结论需要数学证明其合理性!

我没有证明,而是直接用了结论。感兴趣的同学可以自己再去研究研究数学证明哈。

给出我的C++代码如下:

class Solution {
public:
    int integerBreak(int n) {
        if (n == 2) return 1;
        if (n == 3) return 2;
        if (n == 4) return 4;
        int result = 1;
        while (n > 4) {
            result *= 3;
            n -= 3;
        }
        result *= n;
        return result;
    }
};

时间复杂度:O(n)
空间复杂度:O(1)
#总结

总结
本题掌握其动规的方法,就可以了,贪心的解法确实简单,但需要有数学证明,如果能自圆其说也是可以的。

其实这道题目的递推公式并不好想,而且初始化的地方也很有讲究,我在写本题的时候一开始写的代码是这样的:

class Solution {
public:
    int integerBreak(int n) {
        if (n <= 3) return 1 * (n - 1);
        vector<int> dp(n + 1, 0);
        dp[1] = 1;
        dp[2] = 2;
        dp[3] = 3;
        for (int i = 4; i <= n ; i++) {
            for (int j = 1; j <= i / 2; j++) {
                dp[i] = max(dp[i], dp[i - j] * dp[j]);
            }
        }
        return dp[n];
    }
};

这个代码也是可以过的!

在解释递推公式的时候,也可以解释通,dp[i] 就等于 拆解i - j的最大乘积 * 拆解j的最大乘积。 看起来没毛病!

但是在解释初始化的时候,就发现自相矛盾了,dp[1]为什么一定是1呢?根据dp[i]的定义,dp[2]也不应该是2啊。

但如果递归公式是 dp[i] = max(dp[i], dp[i - j] * dp[j]);,就一定要这么初始化。递推公式没毛病,但初始化解释不通!

虽然代码在初始位置有一个判断if (n <= 3) return 1 * (n - 1);,保证n<=3 结果是正确的,但代码后面又要给dp[1]赋值1 和 dp[2] 赋值 2,这其实就是自相矛盾的代码,违背了dp[i]的定义!

我举这个例子,其实就说做题的严谨性,上面这个代码也可以AC,大体上一看好像也没有毛病,递推公式也说得过去,但是仅仅是恰巧过了而已。

动态规划(版本一)

class Solution:
         # 假设对正整数 i 拆分出的第一个正整数是 j(1 <= j < i),则有以下两种方案:
        # 1) 将 i 拆分成 j 和 i−j 的和,且 i−j 不再拆分成多个正整数,此时的乘积是 j * (i-j)
        # 2) 将 i 拆分成 j 和 i−j 的和,且 i−j 继续拆分成多个正整数,此时的乘积是 j * dp[i-j]
    def integerBreak(self, n):
        dp = [0] * (n + 1)   # 创建一个大小为n+1的数组来存储计算结果
        dp[2] = 1  # 初始化dp[2]为1,因为当n=2时,只有一个切割方式1+1=2,乘积为1
       
        # 从3开始计算,直到n
        for i in range(3, n + 1):
            # 遍历所有可能的切割点
            for j in range(1, i // 2 + 1):

                # 计算切割点j和剩余部分(i-j)的乘积,并与之前的结果进行比较取较大值
                
                dp[i] = max(dp[i], (i - j) * j, dp[i - j] * j)
        
        return dp[n]  # 返回最终的计算结果

动态规划(版本二)

class Solution:
    def integerBreak(self, n):
        if n <= 3:
            return 1 * (n - 1)  # 对于n小于等于3的情况,返回1 * (n - 1)

        dp = [0] * (n + 1)  # 创建一个大小为n+1的数组来存储最大乘积结果
        dp[1] = 1  # 当n等于1时,最大乘积为1
        dp[2] = 2  # 当n等于2时,最大乘积为2
        dp[3] = 3  # 当n等于3时,最大乘积为3

        # 从4开始计算,直到n
        for i in range(4, n + 1):
            # 遍历所有可能的切割点
            for j in range(1, i // 2 + 1):
                # 计算切割点j和剩余部分(i - j)的乘积,并与之前的结果进行比较取较大值
                dp[i] = max(dp[i], dp[i - j] * dp[j])

        return dp[n]  # 返回整数拆分的最大乘积结果

贪心

class Solution:
    def integerBreak(self, n):
        if n == 2:  # 当n等于2时,只有一种拆分方式:1+1=2,乘积为1
            return 1
        if n == 3:  # 当n等于3时,只有一种拆分方式:1+1+1=3,乘积为1
            return 2
        if n == 4:  # 当n等于4时,有两种拆分方式:2+2=4和1+1+1+1=4,乘积都为4
            return 4
        result = 1
        while n > 4:
            result *= 3  # 每次乘以3,因为3的乘积比其他数字更大
            n -= 3  # 每次减去3
        result *= n  # 将剩余的n乘以最后的结果
        return result

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/297193.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

有什么安全处理方案可以有效防护恶意爬虫

常见的爬虫 有百度爬虫、谷歌爬虫、必应爬虫等搜索引擎类爬虫&#xff0c;此类爬虫经常被企业用于提高站点在搜索引擎内的自然排名&#xff0c;使得站点在各大搜索引擎中的排名能够提高&#xff0c;进一步通过搜索引擎来进行引流为企业增加业务流量。 恶意爬虫与合法、合规的搜…

资源类的使用(MFC)

文章目录 1.预备知识1.菜单1.创建菜单在系统自动生成的菜单资源中添加一个主菜单命令菜单属性 2.编辑菜单过程中所涉及的操作3.菜单设计步骤4.菜单的响应和消息路由5.CMenu类获取菜单指针添加菜单项删除菜单项获取菜单项数目获取菜单ID号对菜单项属性的修改显示快捷菜单 2.工具…

Reids原理及简单命令

目录 1.关系数据库与非关系型数据库 关系型数据库 非关系型数据库 关系型数据库和非关系型数据库区别 数据存储方式不同 扩展方式不同 对事务性的支持不同 总结&#xff1a; 2. Redis简介 什么是redis reids优点 reids使用场景&#xff1a; reids快的原因 Redis数…

Ubuntu 虚拟机挂接 Windows 目录

Windows 共享目录 首先 Windows 下共享目录 我这里偷懒直接直接 Everyone &#xff0c;也可以指定用户啥的 Ubuntu 挂接 挂接命令&#xff0c;类似如下&#xff1a; sudo mount -o usernamefananchong,passwordxxxx,uid1000,gid1000,file_mode0644,dir_mode0755,dynperm //…

不要告诉别人的passwd

文章目录 不要告诉别人的passwd修改或更新密码删除用户密码查看密码的状态更多信息 不要告诉别人的passwd passwd用于创建或者更新用户密码&#xff0c;是管理员必备的命令之一。 这个命令最终的实现是通过调用Linux-PAM 和Libuser API来实现的。 官方的定义为&#xff1a; …

uniapp微信小程序投票系统实战 (SpringBoot2+vue3.2+element plus ) -小程序首页实现

锋哥原创的uniapp微信小程序投票系统实战&#xff1a; uniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )_哔哩哔哩_bilibiliuniapp微信小程序投票系统实战课程 (SpringBoot2vue3.2element plus ) ( 火爆连载更新中... )共计21条视频…

【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于QuickRNet的TPU超分模型部署

2023 CCF 大数据与计算智能大赛 《赛题名称》 基于QuickRNet的TPU超分模型部署 巴黎欧莱雅 林松 智能应用业务部算法工程师 中信科移动 中国-北京 gpu163.com 团队简介 巴黎欧莱雅团队包含一个队长和零个队员。 队长林松&#xff0c;研究生学历&#xff0c;2019-202…

【C++】内存对齐

本篇文章介绍C中的内存对齐&#xff0c;后续介绍C的union和C的variant的时候&#xff0c;需要用到这部分的知识。 占用内存 先回忆下C各个数据类型占用的内存大小&#xff1a; int&#xff1a;所占内存大小&#xff1a;4byte 32bit&#xff1b;char&#xff1a;所占内存大小…

视频智能分析支持摄像头异常位移检测,监测摄像机异常位移变化,保障监控状态

我们经常在生产场景中会遇到摄像头经过风吹日晒&#xff0c;或者异常的触碰&#xff0c;导致了角度或者位置的变化&#xff0c;这种情况下&#xff0c;如果不及时做出调整&#xff0c;会导致原本的监控条件被破坏&#xff0c;发生事件需要追溯的时候&#xff0c;查不到对应位置…

Kubernetes复习总结(一):Kubernetes内置资源、Device Plugin机制

1、Kubernetes内置资源 1&#xff09;、Pod Pod是Kubernetes进行管理的最小单元&#xff0c;程序要运行必须部署在容器中&#xff0c;而容器必须存在于Pod中 Pod可以认为是容器的封装&#xff0c;一个Pod中可以存在一个或者多个容器 1&#xff09;Pod进程组 在Kubernetes里面…

cookie和session、请求转发和重定向

会话 分为有状态会话和无状态会话 在HTML中&#xff0c;"会话"一般指的是Web服务器与客户端&#xff08;通常是浏览器&#xff09;之间进行的一系列请求和响应。它是一种在网络上模拟人与人之间通信的方式&#xff0c;常见于Web应用程序中。 会话、Cookie和Sessio…

Vue电商后端管理API接口测试

引言 最近有人在学习接口自动化测试时没有接口练手&#xff0c;其实接口的话&#xff0c;要么找第三方提供的&#xff0c;要么自己开发。第三方在线API需要认证&#xff0c;并且普通的话每天调用次数有一定的限制。自己开发的话&#xff0c;只要不停电&#xff0c;想怎么用就怎…

Jmeter接口自动化测试 :Jmeter变量的使用

在使用jmeter进行接口测试时&#xff0c;我们难免会遇到需要从上下文中获取测试数据的情况&#xff0c;这个时候就需要引入变量了。 定义变量 添加->配置元件->用户自定义的变量 添加->配置元件->CSV 数据文件设置 变量的调用方式&#xff1a;${变量名} 变量的作…

低代码平台的崛起:探索火爆背后的因素

文章目录 前言低代码开发平台优缺点有哪些&#xff1f;速度稳定性赋能一致性安全简单低代码为什么能火&#xff1f;由哪些因素导致&#xff1f; 低代码的优势后记 前言 在当前科技发展快速的时代&#xff0c;低代码开发平台越来越受到关注和推崇。与传统的软件开发方式相比&am…

C++学习笔记——类作用域和抽象数据类型

目录 一、C类作用域 类内作用域 类外作用域 二、类作用域案列详细的解释说明 三、抽象数据类型 四、总结 类作用域 抽象数据类型&#xff08;ADT&#xff09; 五、图书馆管理系统 一、C类作用域 在C中&#xff0c;类作用域是指类定义中声明的标识符&#xff08;成员变…

我建立了一个资源分享群

我建立了一个资源分享群 在为寻找资源犯愁&#xff1f; 在为分享资源犯愁&#xff1f; 一起加入分享资源群&#xff08;是wx群哦&#xff09;吧&#xff01;你可以分享自己的资源帮助他人。你可以在群组里需求资源获取别人的帮助。发广告请绕行&#xff0c;会被拉黑哦 微信…

基于SpringBoot+Vue人力资源管理系统(前后端分离)

该项目完全免费 系统介绍 基于 SpringBootVue 实现的人力资源管理系统是为了提高企业人力资源管理水平而开发的。主要目标是通过对员工 及人力资源活动信息&#xff08;考勤、工资 ) 等的编制来提高企业效率。 系统一共分为五大菜单项&#xff0c;分别是首页、薪资管理、权…

Linux安装nginx(带http ssl)

nginx安装 nginx文件 以及gcc pcre zlib openssl 网盘下载 1.安装gcc yum -y install gcc gcc-c 2.安装pcre rpm -ivh pcre-8.32-17.el7.x86_64.rpm --force --nodeps rpm -ivh pcre-devel-8.32-17.el7.x86_64.rpm --force --nodeps 3.安装zlib tar -zxvf zlib-1.2.11.ta…

Bayes贝叶斯识别Spam Email垃圾邮件

目录 介绍&#xff1a; 一、Gaussian Naive Bayes(连续型变量) 1.1数据处理 1.2建模 1.3cross_val_score函数评估 1.4classification_report函数评估 1.5classification_report函数和cross_val_score函数的区别 二、 Multinomial Naive Bayes&#xff08;离散型变量&…

【算法设计与分析】分治-时间复杂度计算

目录 主定理 Master Theorem分治算法运行时间的递归表示主定理的简化形式 主定理的一般形式 递归树 Recursion Tree递归树的简单结论 主定理 Master Theorem 分治算法运行时间的递归表示 将原问题分解成 a 个子问题递归求解&#xff0c;每个子问题的规模是原问题的 1/b。同时子…