基于树种算法优化的Elman神经网络数据预测 - 附代码

基于树种算法优化的Elman神经网络数据预测 - 附代码

文章目录

  • 基于树种算法优化的Elman神经网络数据预测 - 附代码
    • 1.Elman 神经网络结构
    • 2.Elman 神经用络学习过程
    • 3.电力负荷预测概述
      • 3.1 模型建立
    • 4.基于树种优化的Elman网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对Elman神经网络,初始权值阈值盲目随机性的缺点。采用树种算法对ELman的阈值和权值进行优化。利用电力负荷预测模型进行测试,结果表明改进后的神经网络预测性能更佳。

1.Elman 神经网络结构

Elman 型神经网络一般分为四层:输入层、隐含层(中间层)、承接层和输出层 。 如图 1所示。输入层、隐含层、输出层的连接类似于前馈式网络 ,输入层的单元仅起信号传输作用,输出层单元起线性加权作用。隐含层单元的传递函数可采用线性或非线性函数,承接层又称上 下文层或状态层,它用来记忆隐含层单元前一时刻的输出值并返回给网络的输入 , 可以认为是 一个一步延时算子。

Elman 神经网络的特点是隐含层的输出通过承接层的延迟与存储,自联到隐含层的输入。 这种自联方式使其对历史状态的数据具有敏感性,内部反馈网络的加入增强了网络本身处理动态信息的能力 ,从而达到动态建模的目的。此外, Elman 神经网络能够以任意精度逼近任意非线性映射,可以不考虑外部噪声对系统影响的具体形式,如果给出系统的输入输出数据对 , 就可以对系统进行建模 。

在这里插入图片描述

图1.Elman网络结构

2.Elman 神经用络学习过程

以图1为例 , Elman 网络的非线性状态空间表达式为 :
y ( k ) = g ( w 3 x ( k ) ) (1) y(k) = g(w^3x(k)) \tag{1} y(k)=g(w3x(k))(1)

x ( k ) = f ( w 1 x c ( k ) + w 2 ( u ( k − 1 ) ) ) (2) x(k)=f(w^1x_c(k)+w^2(u(k-1)))\tag{2} x(k)=f(w1xc(k)+w2(u(k1)))(2)

x c ( k ) = x ( k − 1 ) (3) x_c(k)=x(k-1)\tag{3} xc(k)=x(k1)(3)

式中, y y y m m m 维输出结点向量 ; x x x n n n 维中间层结点单元向量; u u u r r r 维输入向量; x c x_c xc n n n 维反馈状态向量; w 3 w^3 w3 为中间层到输出层连接权值; w 2 w^2 w2为输入层到中间层连接权值; w 1 w^1 w1为承接层到中间层的连接权值; g ( ∗ ) g(*) g()为输出神经元的传递函数,是中间层输出的线性组合; f ( ∗ ) f(*) f()为中间层神经元的传递函数,常采用 S S S 函数 。

Elman 神经网络也采用 BP 算法进行权值修正,学习指标函数采用误差平方和函数。
E ( w ) = ∑ k = 1 n ( y k ( w ) − y k ′ ( w ) ) 2 (4) E(w)=\sum_{k=1}^n(y_k(w)-y'_k(w))^2\tag{4} E(w)=k=1n(yk(w)yk(w))2(4)

3.电力负荷预测概述

电力系统由电力网、电力用户共同组成,其任务是给广大用户不间断地提供经济、可靠、符 质量标准的电能,满足各类负荷的需求,为社会发展提供动力。由于电力的生产与使用具有特殊性,即电能难以大量储存,而且各类用户对电力的需求是时刻变化的,这就要求系统发电出力应随时与系统负荷的变化动态平衡,即系统要最大限度地发挥出设备能力,使整个系统保 持稳定且高效地运行,以满足用户的需求 。 否则,就会影响供用电的质量,甚至危及系统的安全 与稳定 。 因此,电力系统负荷预测技术发展了起来,并且是这一切得以顺利进行的前提和基础。负荷预测的核心问题是预测的技术问题,或者说是预测的数学模型。传统的数学模型是用现成的数学表达式加以描述,具有计算量小、速度快的优点,但同时也存在很多的缺陷和局限性,比如不具备自学习、自适应能力、预测系统的鲁棒性没有保障等。特别是随着我国经济 的发展,电力系统的结胸日趋复杂,电力负荷变化的非线性、时变性和不确定性的特点更加明 显,很难建立一个合适的数学模型来清晰地表达负荷 和影响负荷的变量之间的 关系。而基于神经网络的非数学模型预测法,为解决数学模型法的不足提供了新的思路 。

3.1 模型建立

利用人工神经网络对电力系统负荷进行预测,实际上是利用人工神经网络可以以任意精度逼近任一非线性函数的特性及通过学习历史数据建模的优点。而在各种人工神经网络中, 反馈式神经网络又因为其具有输入延迟,进而适合应用于电力系统负荷预测。根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。因此,用人工神经网络对电力系统负荷进行预测 ,首要的问题是确定神经网络的输入、输出节点,使其能反映电力负荷的运行规律。

一般来说,电力系统的负荷高峰通常出现在每天的 9~ 19 时之间 ,本案对每天上午的逐时负荷进行预测 ,即预测每天 9 ~ 11 时共 3 小时的负荷数据。电力系统负荷数据如下表所列,表中数据为真实数据,已经经过归 一化 。

时间负荷数据负荷数据负荷数据
2008.10.100.12910.48420.7976
2008.10.110.10840.45790.8187
2008.10.120.18280.79770.743
2008.10.130.1220.54680.8048
2008.10.140.1130.36360.814
2008.10.150.17190.60110.754
2008.10.160.12370.44250.8031
2008.10.170.17210.61520.7626
2008.10.180.14320.58450.7942

利用前 8 天的数据作为网络的训练样本,每 3 天的负荷作为输入向量,第 4 天的负荷作为目标向量。这样可以得到 5 组训练样本。第 9 天的数据作为网络的测试样本,验证网络能否合理地预测出当天的负荷数据 。

4.基于树种优化的Elman网络

树种算法原理请参考:https://blog.csdn.net/u011835903/article/details/108668256

利用树种算法对Elman网络的初始权值和阈值进行优化。适应度函数设计为测试集的绝对误差和:
f i t n e s s = ∑ i = 1 n ∣ p r e d i c t n − T r u e V a l u e n ∣ (5) fitness = \sum_{i=1}^n|predict_n - TrueValue_n| \tag{5} fitness=i=1npredictnTrueValuen(5)

5.测试结果

树种参数设置如下:

%% 网络相关参数设定
hiddNum = 18;%隐含层个数
R = size(p_train,1);%输入数据每组的维度
Q = size(t_train,1);%输出数据的维度
threshold = [0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];%每组数据对应维度的最小(0)和最大值(1);

%% 树种相关参数设定
%% 定义树种优化参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = hiddNum*R + hiddNum + Q + hiddNum*hiddNum + Q*hiddNum;%维度,即权值与阈值的个数,承接层个数
lb = -5.*ones(1,dim);%下边界
ub = 5.*ones(1,dim);%上边界
fobj = @(x) fun(x,hiddNum,R,Q,threshold,p_train,t_train,p_test,t_test);

在这里插入图片描述

从结果来看,3个时刻点,树种-Elman均比原始结果Elman好,误差更小。

由于上述数据有限,大家可以用自己的数据进行测试。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/297137.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

实现网页跟随系统主题切换

如何实现网页跟随系统主题切换?想必大家都是用过媒体查询media (prefers-color-scheme: dark) 实现亮/暗主题的切换,那如何让其跟随系统自动切换呢?在window对象上,有matchMedia这个API可以帮助我们解决这个问题。它和css中的媒体…

微信小程序启用组件按需注入

微信小程序在预览或上传的时候会进行代码质量检测,有时候会提示‘组件需按需注入’,如下图所示: 这是只要加一句代码"lazyCodeLoading": "requiredComponents" 就行了 ,添加的位置在app.json文件的里面&#…

开源协议简介和选择

软件国产化已经提到日程上了,先来研究一下开源协议。 引言 在追求“自由”的开源软件领域的同时不能忽视程序员的权益。为了激发程序员的创造力,现今世界上有超过60种的开源许可协议被开源促进组织(Open Source Initiative)所认可…

Vue2 实现内容拖拽或添加 HTML 到 Tinymce 富文本编辑器的高级功能详解

在 Web 开发中,Tinymce 被广泛应用作为富文本编辑器。除了基础的文本编辑功能,Tinymce 还提供了一系列高级功能,使得文本编辑更加灵活和便捷。本文将介绍如何在 Tinymce 中实现一些高级功能,并深入了解每个工具的使用。 Tinymce …

COMSOL 各版本安装指南

COMSOL下载链接 https://pan.baidu.com/s/1Z7kaOhyenAOsEqzG57PwhQ?pwd0531 1.鼠标右击【COMSOL6.2(64bit)】压缩包(win11及以上系统先点击“显示更多选项”)选择【解压到 COMSOL6.2(64bit)】。 2.鼠标右击【setup】选择【以管理员身份运行】。 3.选择【简体中文…

J2 - ResNet-50v2实战

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制 目录 环境步骤环境设置数据准备图像信息查看 模型设计ResidualBlock块stack堆叠resnet50v2模型 模型训练模型效果展示 总结与心得体会 环境…

三叠云流程制造ERP:构建智慧工厂,实现高效生产管理

在数字化经济的浪潮下,新一代信息技术快速发展,深度整合,引领了工业的创新和变革,推动了企业向智能化发展。解决生产管理、销售管理和技术管理等难题的关键,在于管理者能否及时准确地掌握企业运营信息。三叠云流程制造…

【数据结构】八大排序之快速排序算法

🦄个人主页:修修修也 🎏所属专栏:数据结构 ⚙️操作环境:Visual Studio 2022 目录 一.快速排序简介及思路 二.快速排序代码实现的三种方式 📌左右交换法 📌挖坑填坑法 📌前后指针法 三.快速排序的时间复杂度分析…

Python中通过字符串访问与修改局部变量

嗨喽,大家好呀~这里是爱看美女的茜茜呐 在Python中定义一个函数时,就会把变量空间划分为全局变量(global)与局部变量(local),如果是定义在一个类的成员函数中,那么就还有额外的成员变量(self)空间。 那么,如果在实际操…

API是什么?API的基础知识你知道多少

📢专注于分享软件测试干货内容,欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!📢软件测试面试题分享: 1000道软件测试面试题及答案📢软件测试实战项目分享: 纯接口项目-完…

数字化工厂产品推荐 用ARM控制器代替PLC

近年来,中国数字经济体系已进入高速增长阶段。制造业作为中国经济高质量发展的重要支撑力量,在面临生产成本不断上涨、关键装备和核心零部件“受制于人”等挑战时,建设数字化工厂已成必然。 数字化工厂数据采集出现的问题 在数字工厂的建设…

【H3C】Console口密码配置

配置方法 console口密码主要配置 line con0 //进入con0用户线视图 #line aux0 //S5024X-EI使用该命令进入用户视图 authentication-mode password //认证模式为密码模式,其他还有无密码和…

Pytorch详细安装过程

1、安装anaconda 官网(https://www.anaconda.com/products/distribution#Downloads)下载,使用管理员身份运行(不使用似乎也没事) 这里选择Just me(至于为啥,咱也不是很清楚) 更改路…

透明OLED屏价格:影响因素与市场趋势

在当今的显示技术领域,透明OLED屏以其独特的透明特性和出色的显示效果,正逐渐成为市场的新宠。然而,对于许多消费者和企业来说,透明OLED屏的价格仍是关注的焦点。作为OLED透明屏市场部总监,我认为了解影响透明OLED屏价…

19.计数问题

题目 import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner sc new Scanner(System.in);int n sc.nextInt();int res 0;int x sc.nextInt();for(int i1;i<n;i) {String s i "";for(int j0;j<s.length();j) {…

PHP 基础编程 1

文章目录 前后端交互尝试php简介php版本php 基础语法php的变量前后端交互 - 计算器体验php数据类型php的常量和变量的区别php的运算符算数运算符自增自减比较运算符赋值运算符逻辑运算 php的控制结构ifelseelse if 前后端交互尝试 前端编程语言&#xff1a;JS &#xff08;Java…

【Vue3+React18+TS4】1-1 : 课程介绍与学习指南

本书目录&#xff1a;点击进入 一、为什么做这样一门课程? 二、本门课的亮点有哪些? 2.1、轻松驾驭 2.2、体系系统 2.3、高效快捷 2.4、融合贯通 三、课程内容包括哪些? 四、项目实战 《在线考勤系统》 五、课适合哪些同学? 一、为什么做这样一门课程? 近十年内前端…

docker部署kibana

1&#xff0c;简介 官网 kibana 2&#xff0c;安装docker 参考 linux安装docker 3&#xff0c;准备 Kibana 配置文件 # 进入主节点配置文件目录 cd /export/server/docker/kibana/config # 编辑单机版配置文件 vi kibana.ymlkibana.yml内容 # 主机地址&#xff0c;可以是…

【AI视野·今日NLP 自然语言处理论文速览 第六十八期】Tue, 2 Jan 2024

AI视野今日CS.NLP 自然语言处理论文速览 Tue, 2 Jan 2024 Totally 48 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers A Computational Framework for Behavioral Assessment of LLM Therapists Authors Yu Ying Chiu, Ashish Shar…

【贪心算法】Dijkstra 算法及其衍生

目录 Dijkstra 算法Dijkstra 算法正确性证明 Dijkstra 算法的复杂度优化 Dijkstra 算法的衍生SSSP的应用 Dijkstra 算法 1959 年&#xff0c;Edsger Dijkstra 提出一个非常简单的贪心算法来求解单源最短路径问题&#xff08;Single-Source Shortest Path&#xff0c;SSSP&…