互联网加竞赛 基于人工智能的图像分类算法研究与实现 - 深度学习卷积神经网络图像分类

文章目录

  • 0 简介
  • 1 常用的分类网络介绍
    • 1.1 CNN
    • 1.2 VGG
    • 1.3 GoogleNet
  • 2 图像分类部分代码实现
    • 2.1 环境依赖
    • 2.2 需要导入的包
    • 2.3 参数设置(路径,图像尺寸,数据集分割比例)
    • 2.4 从preprocessedFolder读取图片并返回numpy格式(便于在神经网络中训练)
    • 2.5 数据预处理
    • 2.6 训练分类模型
    • 2.7 模型训练效果
    • 2.8 模型性能评估
  • 3 1000种图像分类
  • 4 最后

0 简介

🔥 优质竞赛项目系列,今天要分享的是

基于人工智能的图像分类技术

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 常用的分类网络介绍

1.1 CNN

传统CNN包含卷积层、全连接层等组件,并采用softmax多类别分类器和多类交叉熵损失函数。如下图:

在这里插入图片描述

  • 卷积层(convolution layer): 执行卷积操作提取底层到高层的特征,发掘出图片局部关联性质和空间不变性质。

  • 池化层(pooling layer): 执行降采样操作。通过取卷积输出特征图中局部区块的最大值(max-pooling)或者均值(avg-pooling)。降采样也是图像处理中常见的一种操作,可以过滤掉一些不重要的高频信息。

  • 全连接层(fully-connected layer,或者fc layer): 输入层到隐藏层的神经元是全部连接的。

  • 非线性变化: 卷积层、全连接层后面一般都会接非线性变化层,例如Sigmoid、Tanh、ReLu等来增强网络的表达能力,在CNN里最常使用的为ReLu激活函数。

  • Dropout : 在模型训练阶段随机让一些隐层节点权重不工作,提高网络的泛化能力,一定程度上防止过拟合

在CNN的训练过程总,由于每一层的参数都是不断更新的,会导致下一次输入分布发生变化,这样就需要在训练过程中花费时间去设计参数。在后续提出的BN算法中,由于每一层都做了归一化处理,使得每一层的分布相对稳定,而且实验证明该算法加速了模型的收敛过程,所以被广泛应用到较深的模型中。

1.2 VGG

VGG 模型是由牛津大学提出的(19层网络),该模型的特点是加宽加深了网络结构,核心是五组卷积操作,每两组之间做Max-
Pooling空间降维。同一组内采用多次连续的3X3卷积,卷积核的数目由较浅组的64增多到最深组的512,同一组内的卷积核数目是一样的。卷积之后接两层全连接层,之后是分类层。该模型由于每组内卷积层的不同主要分为
11、13、16、19 这几种模型

在这里插入图片描述

增加网络深度和宽度,也就意味着巨量的参数,而巨量参数容易产生过拟合,也会大大增加计算量。

1.3 GoogleNet

GoogleNet模型由多组Inception模块组成,模型设计借鉴了NIN的一些思想.

NIN模型特点:

  • 1. 引入了多层感知卷积网络(Multi-Layer Perceptron Convolution, MLPconv)代替一层线性卷积网络。MLPconv是一个微小的多层卷积网络,即在线性卷积后面增加若干层1x1的卷积,这样可以提取出高度非线性特征。
    
  • 2)设计最后一层卷积层包含类别维度大小的特征图,然后采用全局均值池化(Avg-Pooling)替代全连接层,得到类别维度大小的向量,再进行分类。这种替代全连接层的方式有利于减少参数。

Inception 结构的主要思路是怎样用密集成分来近似最优的局部稀疏结构。

在这里插入图片描述

2 图像分类部分代码实现

2.1 环境依赖

python 3.7
jupyter-notebook : 6.0.3
cudatoolkit 10.0.130
cudnn 7.6.5
tensorflow-gpu 2.0.0
scikit-learn 0.22.1
numpy
cv2
matplotlib

2.2 需要导入的包

  import os
  import cv2
  import numpy as np
  import pandas as pd
  import tensorflow as tf
  from tensorflow import keras
  from tensorflow.keras import layers,models
  from tensorflow.keras.models import Sequential
  from tensorflow.keras.optimizers import Adam
  from tensorflow.keras.callbacks import Callback
  from tensorflow.keras.utils import to_categorical
  from tensorflow.keras.applications import VGG19
  from tensorflow.keras.models import load_model
  import matplotlib.pyplot as plt
  from sklearn.preprocessing import label_binarize
  tf.compat.v1.disable_eager_execution()
  os.environ['CUDA_VISIBLE_DEVICES'] = '0' #使用GPU

2.3 参数设置(路径,图像尺寸,数据集分割比例)

 preprocessedFolder = '.\\ClassificationData\\' #预处理文件夹
 outModelFileName=".\\outModelFileName\\" 
 ImageWidth = 512
 ImageHeight = 320
 ImageNumChannels = 3
 TrainingPercent = 70  #训练集比例
 ValidationPercent = 15 #验证集比例

2.4 从preprocessedFolder读取图片并返回numpy格式(便于在神经网络中训练)

def read_dl_classifier_data_set(preprocessedFolder):
  num = 0  # 图片的总数量
  cnt_class = 0  #图片所属的类别
  label_list = []  # 存放每个图像的label,图像的类别
  img_list = []   #存放图片数据
  for directory in os.listdir(preprocessedFolder):
      tmp_dir = preprocessedFolder + directory
      cnt_class += 1
      for image in os.listdir(tmp_dir):
          num += 1
          tmp_img_filepath = tmp_dir + '\\' + image
          im = cv2.imread(tmp_img_filepath)  # numpy.ndarray
          im = cv2.resize(im, (ImageWidth, ImageHeight))  # 重新设置图片的大小
          img_list.append(im)
          label_list.append(cnt_class)  # 在标签中添加类别
          print("Picture " + str(num) + "Load "+tmp_img_filepath+"successfully")
print("共有" + str(num) + "张图片")
print("all"+str(num)+"picturs belong to "+str(cnt_class)+"classes")
return np.array(img_list),np.array(label_list)

all_data,all_label=read_dl_classifier_data_set(preprocessedFolder)

在这里插入图片描述

2.5 数据预处理

图像数据压缩, 标签数据进行独立热编码one-hot

def preprocess_dl_Image(all_data,all_label):
      all_data = all_data.astype("float32")/255  #把图像灰度值压缩到0--1.0便于神经网络训练
      all_label = to_categorical(all_label)  #对标签数据进行独立热编码
      return all_data,all_label

all_data,all_label = preprocess_dl_Image(all_data,all_label) #处理后的数据

对数据及进行划分(训练集:验证集:测试集 = 0.7:0.15:0.15)

def split_dl_classifier_data_set(all_data,all_label,TrainingPercent,ValidationPercent):
      s = np.arange(all_data.shape[0])
      np.random.shuffle(s)  #随机打乱顺序
      all_data = all_data[s] #打乱后的图像数据
      all_label = all_label[s] #打乱后的标签数据
      all_len = all_data.shape[0]
      train_len = int(all_len*TrainingPercent/100)  #训练集长度
      valadation_len = int(all_len*ValidationPercent/100)#验证集长度
      temp_len=train_len+valadation_len
      train_data,train_label = all_data[0:train_len,:,:,:],all_label[0:train_len,:] #训练集
      valadation_data,valadation_label = all_data[train_len:temp_len, : , : , : ],all_label[train_len:temp_len, : ] #验证集
      test_data,test_label = all_data[temp_len:, : , : , : ],all_label[temp_len:, : ] #测试集
      return train_data,train_label,valadation_data,valadation_label,test_data,test_label

train_data,train_label,valadation_data,valadation_label,test_data,test_label=split_dl_classifier_data_set(all_data,all_label,TrainingPercent,ValidationPercent)

2.6 训练分类模型

  • 使用迁移学习(基于VGG19)

  • epochs = 30

  • batch_size = 16

  • 使用 keras.callbacks.EarlyStopping 提前结束训练

    def train_classifier(train_data,train_label,valadation_data,valadation_label,lr=1e-4):
          conv_base = VGG19(weights='imagenet',
                  include_top=False,
                  input_shape=(ImageHeight, ImageWidth, 3) )  
          model = models.Sequential()
          model.add(conv_base)
          model.add(layers.Flatten())
          model.add(layers.Dense(30, activation='relu')) 
          model.add(layers.Dense(6, activation='softmax')) #Dense: 全连接层。activation: 激励函数,‘linear’一般用在回归任务的输出层,而‘softmax’一般用在分类任务的输出层
          conv_base.trainable=False
          model.compile(
          loss='categorical_crossentropy',#loss: 拟合损失方法,这里用到了多分类损失函数交叉熵  
          optimizer=Adam(lr=lr),#optimizer: 优化器,梯度下降的优化方法 #rmsprop
          metrics=['accuracy'])
          model.summary() #每个层中的输出形状和参数。
          early_stoping =tf.keras.callbacks.EarlyStopping(monitor="val_loss",min_delta=0,patience=5,verbose=0,baseline=None,restore_best_weights=True)
          history = model.fit(
          train_data, train_label,
          batch_size=16, #更新梯度的批数据的大小 iteration = epochs / batch_size,
          epochs=30,  # 迭代次数
          validation_data=(valadation_data, valadation_label),  # 验证集
          callbacks=[early_stoping])
          return model,history
    model,history = train_classifier(train_data,train_label,valadation_data,valadation_label,)
    

在这里插入图片描述

2.7 模型训练效果

def plot_history(history):
      history_df = pd.DataFrame(history.history)
      history_df[['loss', 'val_loss']].plot()
      plt.title('Train and valadation loss')
      history_df = pd.DataFrame(history.history)
      history_df[['accuracy', 'val_accuracy']].plot()
      plt.title('Train and valadation accuracy')

plot_history(history)

在这里插入图片描述

2.8 模型性能评估

  • 使用测试集进行评估

  • 输出分类报告和混淆矩阵

  • 绘制ROC和AUC曲线

    from sklearn.metrics import classification_report
    from sklearn.metrics import confusion_matrix
    from sklearn.metrics import accuracy_score
    import seaborn as sns
    Y_pred_tta=model.predict_classes(test_data) #模型对测试集数据进行预测
    Y_test = [np.argmax(one_hot)for one_hot in test_label]# 由one-hot转换为普通np数组
    Y_pred_tta=model.predict_classes(test_data) #模型对测试集进行预测
    Y_test = [np.argmax(one_hot)for one_hot in test_label]# 由one-hot转换为普通np数组
    print('验证集分类报告:\n',classification_report(Y_test,Y_pred_tta))
    confusion_mc = confusion_matrix(Y_test,Y_pred_tta)#混淆矩阵
    df_cm = pd.DataFrame(confusion_mc)
    plt.figure(figsize = (10,7))
    sns.heatmap(df_cm, annot=True, cmap="BuPu",linewidths=1.0,fmt="d")
    plt.title('PipeLine accuracy:{0:.3f}'.format(accuracy_score(Y_test,Y_pred_tta)),fontsize=20)
    plt.ylabel('True label',fontsize=20)
    plt.xlabel('Predicted label',fontsize=20)
    

在这里插入图片描述

在这里插入图片描述

from sklearn.metrics import precision_recall_curve
from sklearn.metrics import average_precision_score
from sklearn.metrics import roc_curve
from sklearn import metrics
import matplotlib as mpl

# 计算属于各个类别的概率,返回值的shape = [n_samples, n_classes]
y_score = model.predict_proba(test_data)
# 1、调用函数计算验证集的AUC 
print ('调用函数auc:', metrics.roc_auc_score(test_label, y_score, average='micro'))
# 2、手动计算验证集的AUC
#首先将矩阵test_label和y_score展开,然后计算假正例率FPR和真正例率TPR
fpr, tpr, thresholds = metrics.roc_curve(test_label.ravel(),y_score.ravel())
auc = metrics.auc(fpr, tpr)
print('手动计算auc:', auc)
mpl.rcParams['font.sans-serif'] = u'SimHei'
mpl.rcParams['axes.unicode_minus'] = False
#FPR就是横坐标,TPR就是纵坐标
plt.figure(figsize = (10,7))
plt.plot(fpr, tpr, c = 'r', lw = 2, alpha = 0.7, label = u'AUC=%.3f' % auc)
plt.plot((0, 1), (0, 1), c = '#808080', lw = 1, ls = '--', alpha = 0.7)
plt.xlim((-0.01, 1.02))
plt.ylim((-0.01, 1.02))
plt.xticks(np.arange(0, 1.1, 0.1))
plt.yticks(np.arange(0, 1.1, 0.1))
plt.xlabel('False Positive Rate', fontsize=16)
plt.ylabel('True Positive Rate', fontsize=16)
plt.grid(b=True, ls=':')
plt.legend(loc='lower right', fancybox=True, framealpha=0.8, fontsize=12)
plt.title('37个验证集分类后的ROC和AUC', fontsize=18)
plt.show()

在这里插入图片描述

3 1000种图像分类

这是学长训练的能识别1000种类目标的图像分类模型,演示效果如下

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/297075.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Plantuml之nwdiag网络图语法介绍(二十九)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…

HTTP协议-Cookie和Session详解

1|0前置: 会话(Session)跟踪是Web程序中常用的技术,用来跟踪用户的整个会话。常用的跟踪技术就是Cookie和Session。 Cookie通过在客户端记录信息确定用户身份,Session通过在服务器记录确定用户身份。 本章将系统的讲…

我的第一个前端项目,vue项目从零开始创建和运行

​入门前端,从基础做起,从零开始新建项目 背景:VUE脚手架项目是一个“单页面”应用,即整个项目中只有1个网页! 在VUE脚手架项目中,主要是设计各个“视图组件”,它们都是整个网页中某个部分&…

养乐多公司确认 95 G 用户私密数据被泄露

一名自称为DragonForce的组织声称已经公开泄露了澳大利亚养乐多公司(Yakult Australia)的95.19 GB数据。Yakult Australia证实了这次网络攻击的真实性,并表示公司在澳大利亚和新西兰的IT系统都受到了影响。 该公司在一份声明中表示&#xff…

(2024,少样本微调自适应,泛化误差界限,减小泛化误差的措施)多模态基础模型的少样本自适应:综述

Few-shot Adaptation of Multi-modal Foundation Models: A Survey 公和众和号:EDPJ(添加 VX:CV_EDPJ 或直接进 Q 交流群:922230617 获取资料) 目录 0. 摘要 1. 简介 2. 多模态基础模型的预训练 3. 多模态基础模…

第九节HarmonyOS 常用基础组件8-Span

1、描述 作为Text组件和RichEditor组件的子组件,用于显示行内文本的组件。 2、接口 Span(value:string | Resource) 3、参数 value - string | Resource - 必填 - 文本内容。 4、属性 名称 参数类型 描述 decoration { type: ;TextDecorationType, color?…

用单片机设计PLC电路图

自记: 以下为PMOS推挽输出及集成块光耦:

算法日志的存在核心在于搭建自检系统

"相信每一个人执行与日志有关的任务都会遇到这样难题吧?长达几万行的日志,如果我们单纯用肉眼去一个个排查,那么恐怕所耗费的时间是以天为计量单位了。当然这是一种比较夸张的情况,根据我的项目经验,正常情况是十…

基于FFmpeg的短视频编辑工具Cut

前言 最近在学习FFmpeg和音视频的相关知识,为了加强对FFmpeg的认识和了解,于是撸了一个短视频编辑软件Cut。 效果图先行: 技术点 启动页优化 但启动app的时候会有一个短暂的黑屏或者白屏。为什么呢? 是因为在App启动时&#x…

腾讯云2核2G3M服务器够用吗?腾讯云2核2G3M云服务器性能评测

阿里云轻量应用服务器2核2G3M带宽优惠价格62元一年,100%CPU性能,3M带宽下载速度384KB/秒,40GB SSD系统盘,月流量200GB,折合每天6.6GB流量,超出月流量包的流量按照0.8元每GB的价格支付流量费,地域…

kubesphere和k8s的使用分享

文章目录 什么是kubernetesKubernetes的部分核心概念互式可视化管理平台与kubernetes的关系市面是常见的kubernetes管理平台 什么是kubesphereKubesphere默认安装的组件Kubesphere涉及的服务组件kubesphere的安装Kubesphere相关的内容 什么是kubernetes 就在这场因“容器”而起…

Vue CLI组件通信

目录 一、组件通信简介1.什么是组件通信?2.组件之间如何通信3.组件关系分类4.通信解决方案5.父子通信流程6.父向子通信代码示例7.子向父通信代码示例8.总结 二、props1.Props 定义2.Props 作用3.特点4.代码演示 三、props校验1.思考2.作用3.语法4.代码演示 四、prop…

科锐16位汇编学习笔记 03 汇编指令

指令种类 数据传送指令算数运算类指令位操作类指令串操作类指令控制转移类指令处理器控制类指令 数据传送类指令 传送类指令不影响标志位,**除了标志位传送指令外。** 传送指令MOV(move) 说明 ​ 把一个字节或字的操作数从源地址传送至…

swift ——多行文字前面内容省略

首先来说一说ios中的 lineBreakModelineBreakMode : 设置文字过长时的显示截断样式 可选值如下 byWordWrapping : 以单词为单位换行,以单词为单位截断。byCharWrapping :以字符为单位换行,以字符为单位截断。byClipping &#x…

Linux进程管理、ps命令、kill命令

每一个程序在运行的时候都会被操作系统注册为系统中的一个进程 补充一下操作系统的内容: 进程实体(又称进程映像):程序段、相关数据段、PCB三部分构成 进程是进程实体的运行过程,是系统进行资源分配的一个独立单位 …

关于时间格式yyyy-M-d或yyyy-MM-d到yyyy-MM-dd的转换

工作时遇到前端传的时间格式是"2023-12-3 17:41:52",和"2023-1-1 17:41:52"但是我想要的是"2023-12-03 17:41:52"和"2023-01-01 17:41:52"。下面给大家分享几个解决方法 方法一: 找前端!让他改&…

关于《码农翻身》一书的读后感以及自己的一些拙见汇总

书籍名称 《码农翻身》 | 刘欣(码农翻身) 著 | 文章将以问答的形式进行叙述 1.是从什么渠道接触到《码农翻身》的 一个工作日的下午,手上的任务基本结束,翻了翻桌上的书和笔记之类的,同事见我在看书,于是向…

用opencv的DNN模块做Yolov5目标检测(纯干货,源码已上传Github)

最近在微信公众号里看到多篇讲解yolov5在openvino部署做目标检测文章,但是没看到过用opencv的dnn模块做yolov5目标检测的。于是,我就想着编写一套用opencv的dnn模块做yolov5目标检测的程序。在编写这套程序时,遇到的bug和解决办法&#xff0c…

Mac启动时候出现禁止符号

Mac启动时候出现禁止符号 启动时候出现禁止符号,意味着 选定的启动磁盘 包含 Mac 操作系统,但它不是 您的 Mac 可以使用的 macOS 。您应该在这个磁盘上 重新安装 macOS 。 可以尝试以下苹果提供的方法: Mac启动时候出现禁止符号 不要轻易抹除磁盘&am…

2023 最火的是什么? 超维计算 + 神经网络

从chatgpt开始,人工智能进步的步伐似乎势不可挡,但支撑这些程序的人工神经网络遇到了一些重大限制,其他的很难推理但是人类的大脑能够通过类比进行推理,当我们看到新事物时,我们不必生长新的神经元,我们可以…