基于闪电搜索算法优化的Elman神经网络数据预测 - 附代码

基于闪电搜索算法优化的Elman神经网络数据预测 - 附代码

文章目录

  • 基于闪电搜索算法优化的Elman神经网络数据预测 - 附代码
    • 1.Elman 神经网络结构
    • 2.Elman 神经用络学习过程
    • 3.电力负荷预测概述
      • 3.1 模型建立
    • 4.基于闪电搜索优化的Elman网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对Elman神经网络,初始权值阈值盲目随机性的缺点。采用闪电搜索算法对ELman的阈值和权值进行优化。利用电力负荷预测模型进行测试,结果表明改进后的神经网络预测性能更佳。

1.Elman 神经网络结构

Elman 型神经网络一般分为四层:输入层、隐含层(中间层)、承接层和输出层 。 如图 1所示。输入层、隐含层、输出层的连接类似于前馈式网络 ,输入层的单元仅起信号传输作用,输出层单元起线性加权作用。隐含层单元的传递函数可采用线性或非线性函数,承接层又称上 下文层或状态层,它用来记忆隐含层单元前一时刻的输出值并返回给网络的输入 , 可以认为是 一个一步延时算子。

Elman 神经网络的特点是隐含层的输出通过承接层的延迟与存储,自联到隐含层的输入。 这种自联方式使其对历史状态的数据具有敏感性,内部反馈网络的加入增强了网络本身处理动态信息的能力 ,从而达到动态建模的目的。此外, Elman 神经网络能够以任意精度逼近任意非线性映射,可以不考虑外部噪声对系统影响的具体形式,如果给出系统的输入输出数据对 , 就可以对系统进行建模 。

在这里插入图片描述

图1.Elman网络结构

2.Elman 神经用络学习过程

以图1为例 , Elman 网络的非线性状态空间表达式为 :
y ( k ) = g ( w 3 x ( k ) ) (1) y(k) = g(w^3x(k)) \tag{1} y(k)=g(w3x(k))(1)

x ( k ) = f ( w 1 x c ( k ) + w 2 ( u ( k − 1 ) ) ) (2) x(k)=f(w^1x_c(k)+w^2(u(k-1)))\tag{2} x(k)=f(w1xc(k)+w2(u(k1)))(2)

x c ( k ) = x ( k − 1 ) (3) x_c(k)=x(k-1)\tag{3} xc(k)=x(k1)(3)

式中, y y y m m m 维输出结点向量 ; x x x n n n 维中间层结点单元向量; u u u r r r 维输入向量; x c x_c xc n n n 维反馈状态向量; w 3 w^3 w3 为中间层到输出层连接权值; w 2 w^2 w2为输入层到中间层连接权值; w 1 w^1 w1为承接层到中间层的连接权值; g ( ∗ ) g(*) g()为输出神经元的传递函数,是中间层输出的线性组合; f ( ∗ ) f(*) f()为中间层神经元的传递函数,常采用 S S S 函数 。

Elman 神经网络也采用 BP 算法进行权值修正,学习指标函数采用误差平方和函数。
E ( w ) = ∑ k = 1 n ( y k ( w ) − y k ′ ( w ) ) 2 (4) E(w)=\sum_{k=1}^n(y_k(w)-y'_k(w))^2\tag{4} E(w)=k=1n(yk(w)yk(w))2(4)

3.电力负荷预测概述

电力系统由电力网、电力用户共同组成,其任务是给广大用户不间断地提供经济、可靠、符 质量标准的电能,满足各类负荷的需求,为社会发展提供动力。由于电力的生产与使用具有特殊性,即电能难以大量储存,而且各类用户对电力的需求是时刻变化的,这就要求系统发电出力应随时与系统负荷的变化动态平衡,即系统要最大限度地发挥出设备能力,使整个系统保 持稳定且高效地运行,以满足用户的需求 。 否则,就会影响供用电的质量,甚至危及系统的安全 与稳定 。 因此,电力系统负荷预测技术发展了起来,并且是这一切得以顺利进行的前提和基础。负荷预测的核心问题是预测的技术问题,或者说是预测的数学模型。传统的数学模型是用现成的数学表达式加以描述,具有计算量小、速度快的优点,但同时也存在很多的缺陷和局限性,比如不具备自学习、自适应能力、预测系统的鲁棒性没有保障等。特别是随着我国经济 的发展,电力系统的结胸日趋复杂,电力负荷变化的非线性、时变性和不确定性的特点更加明 显,很难建立一个合适的数学模型来清晰地表达负荷 和影响负荷的变量之间的 关系。而基于神经网络的非数学模型预测法,为解决数学模型法的不足提供了新的思路 。

3.1 模型建立

利用人工神经网络对电力系统负荷进行预测,实际上是利用人工神经网络可以以任意精度逼近任一非线性函数的特性及通过学习历史数据建模的优点。而在各种人工神经网络中, 反馈式神经网络又因为其具有输入延迟,进而适合应用于电力系统负荷预测。根据负荷的历史数据,选定反馈神经网络的输入、输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。因此,用人工神经网络对电力系统负荷进行预测 ,首要的问题是确定神经网络的输入、输出节点,使其能反映电力负荷的运行规律。

一般来说,电力系统的负荷高峰通常出现在每天的 9~ 19 时之间 ,本案对每天上午的逐时负荷进行预测 ,即预测每天 9 ~ 11 时共 3 小时的负荷数据。电力系统负荷数据如下表所列,表中数据为真实数据,已经经过归 一化 。

时间负荷数据负荷数据负荷数据
2008.10.100.12910.48420.7976
2008.10.110.10840.45790.8187
2008.10.120.18280.79770.743
2008.10.130.1220.54680.8048
2008.10.140.1130.36360.814
2008.10.150.17190.60110.754
2008.10.160.12370.44250.8031
2008.10.170.17210.61520.7626
2008.10.180.14320.58450.7942

利用前 8 天的数据作为网络的训练样本,每 3 天的负荷作为输入向量,第 4 天的负荷作为目标向量。这样可以得到 5 组训练样本。第 9 天的数据作为网络的测试样本,验证网络能否合理地预测出当天的负荷数据 。

4.基于闪电搜索优化的Elman网络

闪电搜索算法原理请参考:https://blog.csdn.net/u011835903/article/details/108538622

利用闪电搜索算法对Elman网络的初始权值和阈值进行优化。适应度函数设计为测试集的绝对误差和:
f i t n e s s = ∑ i = 1 n ∣ p r e d i c t n − T r u e V a l u e n ∣ (5) fitness = \sum_{i=1}^n|predict_n - TrueValue_n| \tag{5} fitness=i=1npredictnTrueValuen(5)

5.测试结果

闪电搜索参数设置如下:

%% 网络相关参数设定
hiddNum = 18;%隐含层个数
R = size(p_train,1);%输入数据每组的维度
Q = size(t_train,1);%输出数据的维度
threshold = [0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];%每组数据对应维度的最小(0)和最大值(1);

%% 闪电搜索相关参数设定
%% 定义闪电搜索优化参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = hiddNum*R + hiddNum + Q + hiddNum*hiddNum + Q*hiddNum;%维度,即权值与阈值的个数,承接层个数
lb = -5.*ones(1,dim);%下边界
ub = 5.*ones(1,dim);%上边界
fobj = @(x) fun(x,hiddNum,R,Q,threshold,p_train,t_train,p_test,t_test);

在这里插入图片描述
在这里插入图片描述

从结果来看,3个时刻点,闪电搜索-Elman均比原始结果Elman好,误差更小。

由于上述数据有限,大家可以用自己的数据进行测试。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/295711.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Zernike多项式法生成相位理论推导及图像引导实现原理

目录 引言 波前传感器 ​编辑 关于相位计算问题补充 关于结构图的修正 光束质量评价指标 Zernike多项式 ​编辑Zernike多项式法生成相位 光强分布求波前相位-GS 更快的迭代方法SPGD 基于Zernike模式的SPGD 引言 我们还是先从第一篇文献开始理解展开今天分享的一些重…

Linux-端口、nmap命令、netstat命令

端口是设备与外界通讯交流的出入口,可分为物理端口和虚拟端口 物理端口实际存在可以看见,而虚拟端口是指计算机内部的端口,是不可见的,用来操作系统和外部交互使用。 IP地址不能锁定程序,所以可以通过端口&#xff0…

圣诞节来临,如何用海外云手机给亚马逊店铺引流?

马上就要到圣诞节了,这是一年中冲刺销售量的最后一个好机会,对所有亚马逊卖家都十分重要。而无论是亚马逊新手卖家还是老卖家,要想在激烈的竞争中取胜,仅仅靠产品本身是不现实的,通过测评和社媒引流获取更多曝光和流量…

提升效率必备:用关键词替换法重命名文件夹技巧

在日常生活和工作中,经常要处理大量的文件夹,进行归类、整理和重命名。但是手动一个个重命名文件夹既费时又费力。为了提高效率,可以采用关键词替换法来批量重命名文件夹。现在讲解云炫文件管理器如何用关键词替换命名文件夹的具体步骤。 首先…

【Linux进程】 进程的理解

目录 前言 1. 系统管理 2. 进程 2.1 概念 2.2 进程的调度 2.3 描述进程-PBC 3. 查看进程 4. 通过系统调用获取进程标示符 前言 在计算机科学领域,进程是一种重要的概念,在日常学习中也经常遇到进程这个概念,那么进程到底是什么&#x…

Keras实现seq2seq

概述 Seq2Seq是一种深度学习模型,主要用于处理序列到序列的转换问题,如机器翻译、对话生成等。该模型主要由两个循环神经网络(RNN)组成,一个是编码器(Encoder),另一个是解码器…

使用mysql查询当天、近一周、近一个月及近一年的数据以及各种报表查询sql

1.mysql查询当天的数据 1 select * from table where to_days(时间字段) to_days(now()); 2.mysql查询昨天的数据 1 select * from table where to_days(now( ) ) - to_days( 时间字段名) < 1 3.mysql查询近一个月的数据 1 SELECT * FROM table WHERE date(时间字段) …

OR-3150:IGBT驱动光耦,可替代HCPL3150

具有MOSFET高输入阻抗和GTR低导通压降特性提供隔离反馈 高隔离电压 1.5A输出电流 工业温度范围&#xff1a;–40C 至 110C 宽工作 VCC 范围 特征 VCM 1500V 时最小共模抑制 &#xff08;CMR&#xff09; 为 35 kV/μs 最大低电平输出电压 &#xff08;VOL&#xff09; 1.0…

杨中科 ASP.NETCore开发效率利器 HOT RELOAD

HOT RELOAD 1、困惑:修改了服务器端的代码&#xff0c;必须重新运行程序。 2、方法1: [启动 (不调试) ] 3、方法2: .NET 6开始的Hot Reload(热重载) 正常修改代码后 不重启&#xff0c;是无法看到新的数据展示在页面 修改 运行结果&#xff1a; 方式一&#xff1a;设置开始…

Android WiFi基础概览

Android WiFi 基础概览 1、WiFi协议2、Android WLAN 架构2.1 应用框架2.2 Wi-Fi 服务2.3 Wi-Fi HAL 3、相关编译 android13-release 1、WiFi协议 Wi-Fi&#xff08;无线通信技术&#xff09;_百度百科 2.4GHz 频段支持以下标准&#xff08;802.11b/g/n/ax&#xff09;&#xff…

CommonJS 和 ES6 Module:一场模块规范的对决(上)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

质量管控之Bug管理 5大注意事项

Bug管理对于提高软件质量、用户满意度、开发效率等都具有重要的意义。它是确保软件质量和用户体验的关键环节。而Bug管理不善&#xff0c;可能会导致软件质量下降、项目进度延误、用户满意度降低、等不良影响。 因此&#xff0c;正确有效地进行Bug管理非常重要&#xff0c;而进…

Maven各版本的官方下载地址

2023年1月3日&#xff0c;周三上午 官方下载地址&#xff1a; https://dlcdn.apache.org/maven/

oracle语法学习

oracle语法学习 1.备份表 create table bd_psndoc_temp as select * from bd_psndoc2.还原表 drop table bd_psndoc; create table bd_psndoc as select * from bd_psndoc_temp3.查询表的前5条记录 select * from bd_psndoc_temp where rownum<54.从一个表中复制所有的列…

为什么有人说PMP是水证,它的含金量到底怎么样?

在我国大陆&#xff0c;有好多证书被商业化得太重了&#xff0c;甚至演变成了个人或一些公司摇钱的工具。所以有些证书受人吹捧它崛起的快&#xff0c;但是活不长&#xff0c;甚至“夭折”&#xff0c;比如以前微软系列的证书&#xff1b; 而PMP认证从国外引进大陆这么多年了&…

为什么原生广告成为APP广告变现的重要选择?

APP广告变现可以采用的广告形式有多种选择&#xff1a;激励视屏、插屏广告、原生广告。开发者可以在不影响用户体验的情况下制定合适的变现策略。 一、什么是原生广告&#xff1f; 原生广告不同于以往传统广告的效果&#xff0c;用户在观看时就像内容里的某个吸睛片段&#x…

onxxruntime使用cuda以及tensorrt进行加速

1、版本匹配 版本需要匹配&#xff0c;不然运行会报错 2、onnxruntime之tensorrt加速 方式一&#xff1a; OrtTensorRTProviderOptions trt_options{}; trt_options.trt_max_workspace_size 2147483648; trt_options.trt_max_partition_iterations 10; trt_options.trt_m…

学习使用layPage, 多功能JS分页组件/插件的方法

学习使用layPage, 多功能JS分页组件/插件的方法 效果图分页代码 效果图 点击查看链接 分页代码 <!DOCTYPE html> <html> <head><meta charset"utf-8"><title>Layui</title><meta name"renderer" content"we…

YOLOv8改进:IoU系列篇 | Shape-IoU结合基于辅助边框的Inner-IoU损失,实现再次创新

🚀🚀🚀本文改进: Shape-IoU结合基于辅助边框的Inner-IoU损失,小目标检测实现涨点,基于辅助边框的优化前提下,更加关注边界框本身的形状和尺度来计算损失 🚀🚀🚀YOLOv8改进专栏:http://t.csdnimg.cn/hGhVK 学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研…

[UUCTF 2022 新生赛]ez_rce

[UUCTF 2022 新生赛]ez_rce wp 在做这道题时&#xff0c;我参考了这篇博客&#xff1a; https://www.cnblogs.com/bkofyZ/p/17594549.html 认识到了自己的一些不足。 题目代码如下&#xff1a; <?php ## 放弃把&#xff0c;小伙子&#xff0c;你真的不会RCE,何必在此纠…