多线程基础入门【Linux之旅】——上篇【线程控制,线程互斥,线程安全】

目录

前文

回望页表

一,什么是线程

二,使用

pthread_create (线程创建)

三,线程控制

1 ,线程共享进程数据,但也拥有自己的一部分数据:

2, 线程  VS 进程优点

3,pthread_join(等待线程)

4,pthread_exit (线程终止)

5, pthread_cancel (线程取消)

6. pthread_t 类型

7.  pthread_detach (线程分离)

四,线程互斥

1. 相关背景概念

2. 互斥量

1),初始化互斥量

2),互斥量加锁与解锁

3),销毁互斥量

理解锁

补充重入 & 线程安全概念

3. 常见的线程不安全的情况

常见的线程安全的情况

常见不可重入的情况

常见可重入的情况

可重入与线程安全联系

可重入与线程安全区别


嘿!收到一张超美的风景图,希望你每天都能顺心! 

前文

结论:在磁盘中储存着的程序文件,他们其实已经被分成许多份大小为4KB的小空间块(被称为页帧);同时,物理内存中,数据以4KB为单位进行储存(被称作页框)。

当进行IO操作时,例如,向物理内存中导入数据,以4KB形式传递。

回望页表

在曾经,我们学习页表时,只是简单提了一下,今天我们再看页表,了解地更详细。 

一,什么是线程

在一个程序里的一个执行路线就叫做线程( thread )。更准确的定义是:线程是 一个进程内部的控制序列 ”一切进程至少都有一个执行线程。
线程在进程内部运行,本质是在进程地址空间内运行。
Linux 系统中,在 CPU 眼中,看到的 PCB 都要比传统的进程更加轻量化。
透过进程虚拟地址空间,可以看到进程的大部分资源,将进程资源合理分配给每个执行流,就形成了线程执行流。               

这样子,我们终于能理解这句话了:线程在进程内部执行,同时也是OS调度的基本单位。线程在进程的地址空间中运行,CPU不关心执行的是否是进程还是线程,只要PCB来执行就行。 值得注意的是,Linux只提供轻量级进程,通过pthread库来实现多线程功能!!Windows对多线程会进行数据结构管理维护,两者方案不同。

说到这里请让我们来重新理解进程用户视角:进程由 内核数据结构 + 代码和数据,同之前的理解差不多,只是内核数据结构从之前的一个PCB成了多个PCB。内核视角:进程: 进程向OS申请空间,承担系统资源的基本实体。 

CPU视角:Linux下,PCB  <=  其他系统的PCB。因为linux多线程实现是分配同一个进程的资源,当进程只有一个线程才 ”等于“ 我们曾经所写的代码。话说到这里,有人会问Linux拥有真正的线程吗?? 答案:没有,多线程只是实现的的一种功能。Linux没有对线程组织管理的数据结构,是轻量级的进程,Linux通过PCB模拟了多线程的功能,同时我们也只有轻量级进程接口。

那怎么实现多线程功能呢??? 用 pthread 线程库——Linux自带的原生线程库

二,使用

pthread_create (线程创建)

thread: 返回线程 ID
attr: 设置线程的属性 attr NULL 表示使用默认属性
start_routine: 是个函数地址,线程启动后要执行的函数
arg: 传给线程启动函数的参数
返回值:成功返回 0 ;失败返回错误码

pthread库,是用用户层的第三方库,不属于C/C++库,所以我们在编译时,需要额外链接pthread库(-pthread)。

#include <iostream>
#include <unistd.h>
#include <pthread.h>

using namespace std;

void *func(void* str)
{
    while (1)
    {
        cout << "new pthread play..., pid: " << getpid() << endl;    
        sleep(1);
    }
    return nullptr;
}

int main()
{
    pthread_t pt[5];
    for (int i = 0; i < 5; i++)
    {
        pthread_create(pt + i, nullptr, func, (void* )"victor");
    }
    while (1)
    {
        cout << "main pthread play ...,  pid:" << getpid() << endl;
        sleep(1);
    }
    return 0;
}

代码是有了,我们如何查看是否有这么多的线程呢???走

PS  -aL  |  grep  Thread     // 就如我们前面一样的来查看线程

这里同样也验证了,我们之前的话,当一个进程只有一个线程时,其线程也可理解为进程。(线程标号 == PID

三,线程控制

1 ,线程共享进程数据,但也拥有自己的一部分数据:

1. 独立的线程ID
2. 一组寄存器(需要有寄存器来储存,线程上下文)
3. 独立的栈  (比如说存储产生的临时变量)
4. errno
5. 信号屏蔽字
6. 调度优先级

2, 线程  VS 进程优点

  • 创建一个新线程的代价要比创建一个新进程小得多。(代价小)
  • 与进程之间的切换相比,线程之间的切换需要操作系统做的工作要少很多。(切换成本低)
  • 线程占用的资源要比进程少很多。
  • 能充分利用多处理器的可并行数量。
  • 在等待慢速I/O操作结束的同时,程序可执行其他的计算任务。
  • 计算密集型应用,为了能在多处理器系统上运行,将计算分解到多个线程中实现。
  • I/O密集型应用,为了提高性能,将I/O操作重叠。线程可以同时等待不同的I/O操作。

这里解释一下,线程较进程切换代价小的原因:CPU内部有 L1~L3cache(缓存),每当CPU读取数据时,会向内存中读取,并利用局部性原理用缓存记录下来那周围一部分数据;如果只是切换线程,由于线程之间共享代码和一些数据,那么就大概率CPU能在内部找到所需数据,不需要再次寻址,载入缓存。而如果是切换进程,需要保存旧进程数据,需要重新加载CPU缓存,效率自然就慢下来

3,pthread_join(等待线程)

功能: 可以阻塞主线程,等待目标线程返回。

thread: 线程 ID
value_ptr: 它指向一个指针,后者指向线程的返回值
返回值:成功返回 0 失败返回错误码

retval :  线程结束返回值。那线程出现异常怎么办,答案是:不用关心线程是否出现异常,因为线程一旦出现崩溃,其他线程一同崩溃,进程也崩溃

成功返回0; 失败,返回错误码。

4,pthread_exit (线程终止)

这里为什么不使用 exit()函数呢?? 原因是exit() 是进程退出!!而这个是线程退出;execl进程替换也不能在线程中随意使用,execl一旦第一进程进行替换,进程中的代码数据也将被替换,线程也无法继续执行。

调用该函数的线程将挂起等待 , 直到 id thread 的线程终止。 thread 线程以不同的方法终止 , 通过 pthread_join 得到的终止状态是不同的,总结如下:
1. 如果 thread 线程通过 return 返回 ,value_ ptr 所指向的单元里存放的是 thread 线程函数的返回值。
2. 如果 thread 线程被别的线程调用 pthread_ cancel 异常终掉 ,value_ ptr 所指向的单元里存放的是常数 PTHREAD_CANCELED。
3. 如果 thread 线程是自己调用 pthread_exit 终止的 ,value_ptr 所指向的单元存放的是传给 pthread_exit 的参数。
4. 如果对 thread 线程的终止状态不感兴趣 , 可以传 NULL value_ ptr 参数

5, pthread_cancel (线程取消)

thread:  也就是取消线程ID

当一个线程被取消,那么线程退出码,将被设置为PTHREAD_CANCELED(底层就是返回(void*)-1

一般都是用于:主线程取消副线程的场景

实践一下:

void *func(void* str)
{
    int n = 5;
    int *data = new int[5];
    while (n--)
    {
        cout << "new pthread play..., pid: " << getpid() << endl;
        data[n] = n;    
        sleep(1);
    }
    pthread_exit((void*)111);
}


int main()
{
    pthread_t pt;
    pthread_create(&pt, nullptr, func, (void* )"victor");
    sleep(3);

    pthread_cancel(pt); // 取消线程
    cout << "pthread_cancel get " << endl;

    sleep(5);
    int* ret = nullptr;
    pthread_join(pt, (void**)&ret); // 等待线程退出
    cout << "main pthread play ...,  pid:" << getpid() << " ret :" << (long long )ret  << endl;
    return 0;
}

6. pthread_t 类型

pthread_t 到底是什么类型呢?取决于实现。对于 Linux 目前实现的 NPTL 实现而言, pthread_t 类型的线程 ID ,本质就是一个进程地址空间上的一个地址

所以我们所打印新线程的地址是共享内存位置的地址

另外,在线程中,我们也可以获取当前线程的ID:pthread_self()。 

上图中线程局部存储又是什么?? 答:被__thread 修饰的全局变量

__thread int tmp = 0;  // __thread的结果,让每个线程都有自己被修饰的全局变量,这也是线程局部存储

7.  pthread_detach (线程分离)

默认情况下,新创建的线程是 joinable 的,线程退出后,需要对其进行 pthread_join 操作,否则无法释放资源,从而造成系统泄漏。如果不关心线程的返回值,主线程一直阻塞,join 是一种负担,这个时候,我们可以告诉系统,当线程退出时,自动释放线程资源。
可以是线程组内其他线程对目标线程进行分离,也可以是线程自己分离 :
pthread_detach(pthread_self()) ;
joinable和分离是冲突的,一个线程不能既是joinable 又是分离的。当新线程进行分离,主线程再用join进行等待,那么join接口会返回错误码。
void *func(void* str)
{
    pthread_detach(pthread_self());
    pthread_exit((void*)111);
}

int main()
{
    pthread_t pt;
    pthread_create(&pt, nullptr, func, (void* )"new pthread ");

     sleep(1); // 需要等线程分离后,才可进行join等待
     int* ret = nullptr;
     cout << "main thread " << endl;
     int n = pthread_join(pt, (void**)&ret); // 等待线程退出
     cout << "n : " << n << " error : " << strerror(n) << endl; 
    return 0;
}

疑问:既然一个新线程已经分离了,那如果发生异常,是否会影响整个进程呢?

答案: 会的,因为线程依旧是共享着进程资源,如果分离的线程出现异常,依旧会导致整个进程发生退出(崩溃)

四,线程互斥

1. 相关背景概念

临界资源:多线程执行流共享的资源就叫做临界资源。
临界区:每个线程内部,访问临界资源的代码,就叫做临界区。
互斥:任何时刻,互斥保证有且只有一个执行流进入临界区,访问临界资源,通常对临界资源起保护作用。
原子性(后面讨论如何实现):不会被任何调度机制打断的操作,该操作只有两态,要么完成,要么未完成。

通过下面代码,我们来理解为什么需要线程互斥:

int ticket = 1000;
void* getticket(void* str)
{
    // 打印并进行取票
    while(ticket > 0)
    {
        usleep(1000);
        cout << "getticket : " << ticket << endl;
        ticket--;
    }
    pthread_exit(nullptr);
}

int main()
{
    pthread_t t1, t2, t3,t4;
  
    pthread_create(&t1, nullptr, getticket, nullptr);
    pthread_create(&t2, nullptr, getticket, nullptr);
    pthread_create(&t3, nullptr, getticket, nullptr);
    pthread_create(&t4, nullptr, getticket, nullptr);

    pthread_join(t1, nullptr);
    pthread_join(t2, nullptr);
    pthread_join(t3, nullptr);
    pthread_join(t4, nullptr);
    return 0;
}

为什么可能无法获得争取结果?
1. while 判断条件为真以后,代码可以并发的切换到其他线程。
2. usleep 这个模拟漫长业务的过程,在这个漫长的业务过程中,可能有很多个线程会进入该代码段。
3. -- ticket 操作本身就不是一个原子操作。

-- 操作并不是原子操作,而是对应三条汇编指令:
load : 将共享变量 ticket 从内存加载到寄存器中
update :   更新寄存器里面的值,执行 -1 操作
store : 将新值,从寄存器写回共享变量 ticket 的内存地址

总之: 

票出现负数原因:我们的getticket函数是可重入函数。由于CPU调度切换原因导致,数据出现异步。

大部分情况,线程使用的数据都是局部变量(比如说栈上的变量),变量的地址空间在线程栈空间内,这种情况,变量归属单个线程,其他线程无法获得这种变量。 但有时候,很多变量都需要在线程间共享,这样的变量称为共享变量,可以通过数据的共享,完成线程之间的交互。 多个线程并发的操作共享变量,会带来一些问题 

不太理解数据异步可以参考下面这个例子:

2. 互斥量

为了解决下面的问题: 

代码必须要有互斥行为:当代码进入临界区执行时,不允许其他线程进入该临界区。
如果多个线程同时要求执行临界区的代码,并且临界区没有线程在执行,那么只能允许一个线程进入该临界区。
如果线程不在临界区中执行,那么该线程不能阻止其他线程进入临界区。
要做到这三点,本质上就是需要一把锁。 Linux 上提供的 这把锁叫互斥量

接口:

1),初始化互斥量

pthread_mutex_t  类型,本质上是一个联合体。

两种方法:

方法1,静态分配(全局锁):

pthread_mutex_t   mutex = PTHREAD_MUTEX_INITIALIZER

全局锁,可以不用考虑销毁锁。

方法2,动态分配(局部锁):
int pthread_mutex_init (pthread_mutex_t *   restrict mutex,  const pthread_mutexattr_t *   restrict attr);
参数:
mutex :要初始化的互斥量
attr NULL
通过函数设置的锁,在 生命周期快结束时,需要销毁局部锁

2),互斥量加锁与解锁

int pthread_mutex_lock(pthread_mutex_t  *mutex);
int pthread_mutex_unlock(pthread_mutex_t  *mutex);
返回值: 成功返回 0, 失败返回错误号。
调用 pthread_ lock 时,可能会遇到以下情况:
情况一:互斥量处于未锁状态,该函数会将互斥量锁定,同时返回成功。
情况二:发起函数调用时,其他线程已经锁定互斥量,或者存在其他线程同时申请互斥量,但没有竞争到互斥量,那么pthread_ lock 调用会陷入阻塞( 执行流被挂起 ) ,等待互斥量解锁。

3),销毁互斥量

销毁互斥量需要注意:
使用 PTHREAD_ MUTEX_ INITIALIZER 初始化的互斥量不需要销毁 。不要销毁一个已经加锁的互斥量
已经销毁的互斥量,要确保后面不会有线程再尝试加锁。(尽量不销毁互斥量,互斥量尽量用PTHREAD_MUTEX_INITIALIZER初始化)

改善后的抢票系统:

pthread_mutex_t  mutex = PTHREAD_MUTEX_INITIALIZER;
int ticket = 1000;

void* getticket(void* str)
{
    
    // 打印并进行取票
     while(1)
    {
        pthread_mutex_lock(&mutex); // 加锁
        if (ticket > 0 )
        {     
        usleep(1000);
        ticket--;
        pthread_mutex_unlock(&mutex); // 解锁
        // 为什么要将cout代码置出临界区??
        // 我们需要注重临界区代码的颗粒度,颗粒度越小,越好。
        // 对于多线程访问临界资源,我们需要考虑效率问题。将无关紧要的代码优化掉,提高临界区的颗粒,细密度。
        cout << (char*)str << " getticket : " << ticket << endl;
        }else
        {
            pthread_mutex_unlock(&mutex);
            break;
        }
    pthread_exit(nullptr);
}

int main()
{
    pthread_t t1, t2, t3,t4;
    pthread_create(&t1, nullptr, getticket, (void*)"线程一:");
    pthread_create(&t2, nullptr, getticket, (void*)"线程二:");
    pthread_create(&t3, nullptr, getticket, (void*)"线程三:");
    pthread_create(&t4, nullptr, getticket, (void*)"线程四:");

    pthread_join(t1, nullptr);
    pthread_join(t2, nullptr);
    pthread_join(t3, nullptr);
    pthread_join(t4, nullptr);
    return 0;
}

错误代码反思分享:

我们知道上面是对临界资源进行修改。那我们仅仅是访问临界资源呢??那我们是否可以不用跟其他线程进行竞争锁,直接访问!

回答:从语法上来说是允许的。但这是错误的编码思想。即使是访问临界资源,也需要进行申请锁

理解锁

1. 对临界区代码进行加锁,使临界区的执行是穿行的。即使是CPU调度,持有锁的线程被换下,其他线程也执行不了临界区代码。

2. 多个线程线程竞争锁,锁本身也是一种共享资源,那如何保护锁的安全性? 答:申请锁与释放锁,底层执行操作是原子操作

3. 锁的底层原理:

补充重入 & 线程安全概念

线程安全:多个线程并发同一段代码时,不会出现不同的结果。常见对全局变量或者静态变量进行操作,并且没有锁保护的情况下,会出现该问题。
重入:同一个函数被不同的执行流调用,当前一个流程还没有执行完,就有其他的执行流再次进入,我们称之为重入。一个函数在重入的情况下,运行结果不会出现任何不同或者任何问题,则该函数被称为可重入函数,反之,则不可重入函数。

3. 常见的线程不安全的情况

不保护共享变量的函数
函数状态随着被调用,状态发生变化的函数
返回指向静态变量指针的函数
调用线程不安全函数的函数

常见的线程安全的情况

每个线程对全局变量或者静态变量只有读取的权限,而没有写入的权限,一般来说这些线程是安全的类或者接口对于线程来说都是原子操作多个线程之间的切换不会导致该接口的执行结果存在二义性。

常见不可重入的情况

调用了 malloc/free 函数,因为 malloc 函数是用全局链表来管理堆的
调用了标准 I/O 库函数,标准 I/O 库的很多实现都以不可重入的方式使用全局数据结构
可重入函数体内使用了静态的数据结构

常见可重入的情况

不使用全局变量或静态变量
不使用用 malloc 或者 new 开辟出的空间
不调用不可重入函数
不返回静态或全局数据,所有数据都有函数的调用者提供
使用本地数据,或者通过制作全局数据的本地拷贝来保护全局数据

可重入与线程安全联系

函数是可重入的,那就是线程安全的 。(概率晦涩,我们知道这个即可)
函数是不可重入的,那就不能由多个线程使用,有可能引发线程安全问题。
如果一个函数中有全局变量,那么这个函数既不是线程安全也不是可重入的。

可重入与线程安全区别

可重入函数是线程安全函数的一种。
线程安全不一定是可重入的,而可重入函数则一定是线程安全的
如果将对临界资源的访问加上锁,则这个函数是线程安全的,但如果这个重入函数若锁还未释放则会产生死锁,因此是不可重入的。


下期:多线程——下篇

结语

   本小节就到这里了,感谢小伙伴的浏览,如果有什么建议,欢迎在评论区评论,如果给小伙伴带来一些收获请留下你的小赞,你的点赞和关注将会成为博主创作的动力

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/293305.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

服务器内存介绍

本篇文章用于介绍服务器内存&#xff0c;包括基本概念、内存演进、规格识别、内存条配置规则等 1、基本概念 服务器内存是指安装在服务器主板上的用于存储和处理数据的硬件组件。它是服务器中的主要性能关键因素之一&#xff0c;对于服务器的运行速度、多任务处理能力和数据处…

Linux 进程(九) 进程等待

子进程退出&#xff0c;父进程如果不管不顾&#xff0c;就可能造成‘僵尸进程’的问题&#xff0c;进而造成内存泄漏&#xff0c;所以父进程回收子进程是必然要做的。 另外&#xff0c;进程一旦变成僵尸状态&#xff0c;那就刀枪不入&#xff0c;“杀人不眨眼”的kill …

线性代数笔记6 1.4

学习视频&#xff1a; 2.2 矩阵运算&#xff08;二&#xff09;_哔哩哔哩_bilibili 包括内容&#xff1a; p23 3.2 线性相关线性无关 p24 3.3 向量的秩&#xff08;一&#xff09; p25 3.3 向量的秩&#xff08;二&#xff09; p26 4.1 线性方程组 p27 4.2 线性方程组有解…

一篇文章带你了解基于 Jenkins 流水线方式部署的好处

在软件开发过程中&#xff0c;部署是将代码从开发环境转移到生产环境的关键步骤。传统的部署方式可能涉及多个手动步骤和容易出错的过程。然而&#xff0c;基于 Jenkins 流水线方式部署可以带来许多好处&#xff0c;包括提高效率、一致性和可靠性。本文将探讨基于 Jenkins 流水…

【Spring实战】21 Spring Data REST 常用功能详细介绍

文章目录 1. 资源导出&#xff08;Resource Exporting&#xff09;2. 查询方法&#xff08;Query Methods&#xff09;3. 分页和排序&#xff08;Pagination and Sorting&#xff09;4. 关联关系&#xff08;Associations&#xff09;5. 事件&#xff08;Events&#xff09;6. …

Parallels虚拟机启动后,Mac主机无法上网怎么办

文章目录 1.问题2.解决 1.问题 部分用户在运行Parallels Desktop的Windows 11打开后&#xff0c;Windows上网没有问题 &#xff0c;但是Mac主机不能访问带域名的网站&#xff0c;而访问带ip的网站没问题&#xff0c;退出parallels虚拟机以后&#xff0c;mac网络恢复正常。 2.…

【管理篇 / 恢复】❀ 07. macOS下用命令刷新固件 ❀ FortiGate 防火墙

【简介】随着苹果电脑的普及&#xff0c;很多管理员都会通过苹果电脑对飞塔防火墙进行管理。当防火墙需要命令状态下刷新固件时&#xff0c;在macOS下用命令刷新固件&#xff0c;将会是一个小小的挑战。 首先是硬件的连接&#xff0c;USB配置线的USB一头&#xff0c;接入MAC的U…

【亚马逊云科技】自家的AI助手 - Amazon Q

写在前面&#xff1a;博主是一只经过实战开发历练后投身培训事业的“小山猪”&#xff0c;昵称取自动画片《狮子王》中的“彭彭”&#xff0c;总是以乐观、积极的心态对待周边的事物。本人的技术路线从Java全栈工程师一路奔向大数据开发、数据挖掘领域&#xff0c;如今终有小成…

高并发下的计数器实现方式:AtomicLong、LongAdder、LongAccumulator

一、前言 计数器是并发编程中非常常见的一个需求&#xff0c;例如统计网站的访问量、计算某个操作的执行次数等等。在高并发场景下&#xff0c;如何实现一个线程安全的计数器是一个比较有挑战性的问题。本文将介绍几种常用的计数器实现方式&#xff0c;包括AtomicLong、LongAd…

IO进程线程Day4

1> 创建出三个进程完成两个文件之间拷贝工作&#xff0c;子进程1拷贝前一半内容&#xff0c;子进程2拷贝后一半内容&#xff0c;父进程回收子进程的资源 #include <myhead.h> //使用三个进程完成两个文件的拷贝工作 //两个子进程分别拷贝文件的上下两部分 //父进程回…

基础知识:晶振的驱动功率测量方法

驱动功率 驱动功率是指振荡电路工作时晶体谐振器的功耗。 保持晶体谐振器低于驱动功率是很重要的。超过驱动功率&#xff0c;可能会引起频率和等效串联电阻的意外变化。 按如下方法计算驱动功率 : 驱动功率 I &#xff65;R1 I&#xff1a;驱动功率 [有效值] R1&#xff1a…

【Mybatis系列】Mybatis判断问题

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

简单的MySQL高可用还不快来学

MHA高可用 传统的MySQL主从架构会存在单点故障问题 MySQL集群高可用方案 单主&#xff1a;keepalived MHA MMM 多主&#xff1a;MySQL cluster PXC 1 MHA 1.1 MHA简介 MHA&#xff08;Master High Availability Manager and tools for MySQL&#xff09;目前在MySQL高可…

Focal Loss

1、样本不均衡的 问题 与 方案 Focal loss 用于解决上述 样本不均衡的问题 : \quad 1、正负样本数量不均衡 \quad 2、易分类的样本和难分类的样本数量不均衡

【Linux】常用的基本命令指令②

前言&#xff1a;前面我们学习了Linux的部分指令&#xff0c;今天我们将接着上次的部分继续将Linux剩余的基本指令. &#x1f496; 博主CSDN主页:卫卫卫的个人主页 &#x1f49e; &#x1f449; 专栏分类:Linux的学习 &#x1f448; &#x1f4af;代码仓库:卫卫周大胖的学习日记…

基于gamma矫正的照片亮度调整(python和opencv实现)

import cv2 import numpy as npdef adjust_gamma(image, gamma1.0):invGamma 1.0 / gammatable np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 256)]).astype("uint8")return cv2.LUT(image, table)# 读取图像 original cv2.imread("tes…

使用qtquick调用python程序

一. 内容简介 使用qtquick调用python程序 二. 软件环境 2.1vsCode 2.2Anaconda version: conda 22.9.0 2.3pytorch 安装pytorch(http://t.csdnimg.cn/GVP23) 2.4QT 5.14.1 新版QT6.4,&#xff0c;6.5在线安装经常失败&#xff0c;而5.9版本又无法编译64位程序&#xf…

【算法】递归算法理解(持续更新)

这里写目录标题 一、递归算法1、什么情况下可以使用递归&#xff1f;2、递归算法组成部分3、案例&#xff1a;求n的阶乘4、编写一个递归函数来计算列表包含的元素数。5、通过递归找到列表中最大的数字。6、通过递归的方式实现二分查找算法。 一、递归算法 递归&#xff08;Rec…

pytorch07:损失函数与优化器

目录 一、损失函数是什么二、常见的损失函数2.1 nn.CrossEntropyLoss交叉熵损失函数2.1.1 交叉熵的概念2.2.2 交叉熵代码实现2.2.3 加权重损失 2.2 nn.NLLLoss2.2.1 代码实现 2.3 nn.BCELoss2.3.1 代码实现 2.4 nn.BCEWithLogitsLoss2.4.1 代码实现 三、优化器Optimizer3.1 什么…