imgaug库指南(四):从入门到精通的【图像增强】之旅

引言

在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的关键所在。而imgaug,作为一个功能强大的图像增强库,为我们提供了简便且高效的方法来扩充数据集。本系列博客将带您深入了解如何运用imgaug进行图像增强,助您在深度学习的道路上更进一步。我们将从基础概念讲起,逐步引导您掌握各种变换方法,以及如何根据实际需求定制变换序列。让我们一起深入了解这个强大的工具,探索更多可能性,共同推动深度学习的发展。


前期回顾

链接主要内容
imgaug库指南(一):从入门到精通的【图像增强】之旅介绍了imgaug库的主要功能、安装方式、提供一个简单的数据增强示例(针对一副图像)
imgaug库指南(二):从入门到精通的【图像增强】之旅介绍了如何利用imgaug库对批量图像进行数据增强并可视化
imgaug库指南(三):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 高斯模糊

在本博客中,我们将向您详细介绍imgaug库的数据增强方法 —— 均值模糊


均值模糊(AverageBlur)

功能介绍

iaa.AverageBlur是imgaug库中的一个方法,用于对图像进行均值模糊(Average Blurring)。均值模糊是一种图像处理技术,它通过将图像中每个像素的值替换为其邻域内像素值的平均值来减少图像中的噪声和细节。在数据增强中,这种方法常被用来模拟各种实际场景中可能出现的图像模糊效果。

语法

iaa.AverageBlur方法的基本语法如下:

iaa.AverageBlur(k)
  • k为整数,那么卷积核的核大小为k;
  • k为包含两个整数的元组 (a, b),核大小将从 [a…b] 区间中随机采样;
  • k为包含 两个整数元组 的元组 ((a, b), (c, d)),则每张图像将从 [a…b] 区间中采样随机核高度,从 [c…d] 区间中采样随机核宽度;

示例代码

  1. 探究使用不同卷积核大小对图像模糊效果的影响
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt

# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# 创建均值模糊增强器
aug1 = iaa.AverageBlur(k=3)
aug2 = iaa.AverageBlur(k=7)
aug3 = iaa.AverageBlur(k=15)

# 对图像进行均值模糊处理
blurred_image1 = aug1(image=image)
blurred_image2 = aug2(image=image)
blurred_image3 = aug3(image=image)

# 展示原始图像和模糊后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(blurred_image1)
axes[0][1].set_title("Blurred Image1")
axes[1][0].imshow(blurred_image2)
axes[1][0].set_title("Blurred Image2")
axes[1][1].imshow(blurred_image3)
axes[1][1].set_title("Blurred Image3")
plt.show()

运行结果如下:

图1 原图及均值模糊结果可视化

注意事项

  1. k参数中的值最好是奇数,因为偶数大小的卷积核没有明确的中心点,这会导致模糊算法不对称。
  2. k参数也可以是一个范围,每次增强操作时会从这个范围内随机选择一个数值作为实际的卷积核。
  3. 均值模糊会显著减少图像中的高频细节,这可能会影响依赖于这些细节特征的机器学习模型的性能。
  4. 在构建数据增强序列时,iaa.AverageBlur可以与其他增强方法(如旋转、缩放等)结合使用,以模拟更复杂的图像变化。

总结

iaa.AverageBlur是imgaug库中用于图像均值模糊的方法。通过指定卷积核的大小范围,它可以在数据增强过程中为图像添加不同程度的模糊效果。这种模糊有助于模拟实际场景中可能出现的图像降质,并可以增强机器学习模型的鲁棒性。在使用时,需要注意卷积核大小须是奇数,并且要根据具体任务的需要选择合适的模糊程度。


小结

imgaug是一个强大的图像增强库,它可以帮助你创建出丰富多样的训练数据,从而改进你的深度学习模型的性能。通过定制变换序列和参数,你可以轻松地适应各种应用场景,从计算机视觉到医学影像分析。随着深度学习的发展,imgaug在未来将继续发挥重要作用。因此,将imgaug纳入你的数据增强工具箱是一个明智的选择。

参考链接


结尾

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见,因为这对我们来说意义非凡。
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果您觉得我们的博文给您带来了启发,那么,希望能为我们点个免费的赞/关注您的支持和鼓励是我们持续创作的动力
请放心,我们会持续努力创作,并不断优化博文质量,只为给带来更佳的阅读体验。
再次感谢的阅读,愿我们共同成长,共享智慧的果实!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/293205.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

AntDB内存管理之内存上下文

1. 主题说明 AntDB的内存管理在开发时,使用了内存上下文机制来实现内存管理。本文就从AntDB的内存上下文机制出发,解析内存上下文的实现原理。AntDB的代码中,涉及到内存的处理时,经常会看到下面这样的代码。 图1:切换…

SpringBean的生命周期

SpringBean Bean的生命周期 1、首先需要明确bean对象与普通对象的区别: 对于普通的 Java 对象,当 new 的时候创建对象,然后该对象就能够使用了。一旦该对象不再被使用,则由 Java 自动进行垃圾回收。 而 Spring 中的对象是 bean,…

Gin 路由注册与请求参数获取

Gin 路由注册与请求参数获取 文章目录 Gin 路由注册与请求参数获取一、Web应用开发的两种模式1.前后端不分离模式2.前后端分离模式 二、RESTful介绍三、API接口3.1 RESTful API设计指南3.2 API与用户的通信协议3.3 RestFul API接口设计规范3.3.1 api接口3.3.2 接口文档&#xf…

C++_模板

目录 1、函数模板 1.2 模板原理 2、多个模板参数 3、模板的显示实例化 4、模板的匹配 5、类模板 结语: 前言: 在C中,模板分为函数模板和类模板,而模板的作用就是避免了重复的工作,把原本是程序员要做的重复工作…

内网DNS隐蔽隧道搭建之iodine工具

iodine iodine是基于C语言开发的,分为服务端和客户端。iodine支持转发模式和中继模式。其原理是:通过TAP虚拟网卡,在服务端建立一个局域网;在客户端,通过TAP建立一个虚拟网卡;两者通过DNS隧道连接&#xf…

YACS(上海计算机学会竞赛平台)2023年12月月赛——移动复位

移动复位 内存限制: 256 Mb时间限制: 1000 ms 题目描述 二维平面上有一个点。该点最初所在的位置称之为起点。接下来,该点接受了一串命令,每个命令可以用一个大写字母表示: R 表示该点沿 X 轴坐标正方向移动了一个单位;L 表示…

AI实景无人直播创业项目:开启自动直播新时代,一部手机即可实现增长

在当今社会,直播已经成为了人们日常生活中不可或缺的一部分。无论是商家推广产品、明星互动粉丝还是普通人分享生活,直播已经渗透到了各行各业。然而,传统直播方式存在着一些不足之处,如需现场主持人操作、高昂的费用等。近年来&a…

CentOs 环境下使用 Docker 部署 Ruoyi-Vue

CentOs 环境下使用 Docker 部署 Ruoyi-Vue RuoYi-Vue 项目下载地址 RuoYi-Vue: 🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本 (gitee.com) Docker 部…

x-cmd pkg | tig - git 文本模式界面

目录 简介首次用户功能特点类似工具与竞品进一步探索 简介 tig 由 Jonas Fonseca 于 2006 年使用 C 语言创建的 git 交互式文本命令行工具。旨在开启交互模式快速浏览 git 存储库的信息以及 git 命令的运行。 首次用户 使用 x tig 即可自动下载并使用 在终端运行 eval "…

NeurIPS上新 | 从扩散模型、脑电表征,到AI for Science,微软亚洲研究院精选论文

编者按:欢迎阅读“科研上新”栏目!“科研上新”汇聚了微软亚洲研究院最新的创新成果与科研动态。在这里,你可以快速浏览研究院的亮点资讯,保持对前沿领域的敏锐嗅觉,同时也能找到先进实用的开源工具。 本期“科研上新…

项目框架构建之6:编写通用主机基础类

本文是“项目框架构建”系列之6,本文介绍如何编写通用主机基础类。 1.为了构建通用主机,我们先创建主机接口IAppHost接口 接口需要有配置项,我们定义为HostConfiguration,比如我们希望用户可以设定他的工作目录,就可…

GLEE:一个模型搞定目标检测/实例分割/定位/跟踪/交互式分割等任务!性能SOTA!

GLEE,这是一个面向目标级别的基础模型,用于定位和识别图像和视频中的目标。通过一个统一的框架,GLEE实现了对开放世界场景中任意目标的检测、分割、跟踪、定位和识别,适用于各种目标感知任务。采用了一种协同学习策略,…

C之BS开发

一、 BS 概述与 boa 搭建 1.1 BS 模式开发概述 BS 模式: 浏览器与服务器模式, 即通过浏览器访问服务器的 Web 资源。 1.1.1 web 前端开发技术 主要包含: HTML 、 CSS 、 XML/JSON 、 Javascript 、 AJAX HTML 超文本标记语言 ( 英文全称…

华为欧拉安装部署:Oracle11g

一、环境准备 1、下载安装低版本的libaio包;libaio版本太高,会造成编译错误 查看libaio1库版本不能大于0.3.109 [oracles3 install]$ rpm -qa libaio libaio-0.3.110-12.el8.x86_64# 查看欧拉操作系统版本 [oraclelocalhost bin]$ cat /etc/os-release…

stable diffusion 基础教程-提示词之艺术风格用法

展现夕阳 golden hour, (rim lighting):1.2, warm tones, sun flare, soft shadows, vibrant colors, hazy glow, painterly effect, dreamy atmosphere阴影 chiaroscuro, (high contrast):1.2, dramatic shadows, bold highlights, moody atmosphere, captivating inte…

5-sql注入之文件读写

文章目录 SQL注入之文件读写1、文件读写注入的原理2、文件读写注入的条件读取文件写入文件 SQL注入之文件读写 1、文件读写注入的原理 就是利用文件的读写权限进行注入,它可以写入一句话木马,也可以读取系统文件的敏感信息。 2、文件读写注入的条件 …

02 Deep learning algorithm

Neural Networks target: inference(prediction)training my own modelpractical advice for building machine learning systemdecision Tress application: speech(语音识别) ----> images(计算机视觉)—> t…

MS713/MS713T:CMOS 低压、4Ω四路单刀单掷开关,替代ADG713

产品简述 MS713/MS713T 是一款单芯片 CMOS 4 路可选择开关,具有低 功耗、高开关速度、低导通阻抗、低漏电和高带宽特性。其工作 电压范围是 1.8V 到 5.5V ,可以广泛应用在电池供电仪器仪表、新 一代的模数转换和数模转换系统中。其高带宽特性可用在 …

代码+视频,手把手教你R语言使用forestploter包绘制单组及双组森林图

森林图在论文中很常见,多用于表示多因素分析中的变量与结果变量的比值效应,可以用图示的方法比较直观的绘制出来。既往我们在文章《R语言快速绘制多因素回归分析森林图(1)》已经介绍了怎么绘制森林图,但是绘图比较简单…

SecOC中新鲜度值和MAC都按照完整的值来生成,但是在发送和认证的时候只会截取一部分。这边截取的部分一般取多长?由什么参数设定?

新鲜度值(Freshness Value, FV)和消息验证码(Message Authentication Code, MAC)是SecOC协议中用于保证数据的真实性和新鲜度的重要信息。它们的长度取决于不同的因素,如加密算法、安全级别、通信带宽等。 一般来说,FV和MAC的长度越长,安全性越高,但也会占用更多的通信…