【数据结构】二叉树的链式实现

树是数据结构中非常重要的一种,在计算机的各方个面都有他的身影
此篇文章主要介绍二叉树的基本操作

目录

  • 二叉树的定义:
  • 二叉树的创建:
  • 二叉树的遍历:
    • 前序遍历:
    • 中序遍历:
    • 后序遍历:
  • 二叉树节点个数:
  • 二叉树叶子结点个数:
  • 二叉树第k层节点个数:
  • 二叉树查找值为x的节点:
  • 二叉树的销毁:

二叉树的定义:

这里我们使用char,因为二叉树的创建我们会使用递归创建,需要传入一个字符串进行操作

typedef char BTDataType;

typedef struct BinaryTreeNode
{
	BTDataType data;
	struct BinaryTreeNode* left;
	struct BinaryTreeNode* right;
}BTNode;

二叉树的创建:

我们通过前序遍历的数组"123###45##6##"构建二叉树
在这里插入图片描述

这里讲一下我使用递归做题时的一些做题感受方法:

  • 首先写出递归的结束条件,这是每个递归都不可以缺少的
  • 利用分治的思想(将一个问题分成几个相同的子问题)
  • 把你的递归想象是可以完成你既定的任务
  • 写出你调用这个递归需要本次进行的工作
  • 完成后可以画出一个递归展开图进行验证

接下来我会仔细带着大家仔细领悟,熟能生巧,同学们一定不要气馁

先解释一下这个函数传参的意义:

BTNode* BinaryTreeCreate(BTDataType* a, int* pi)
a就是我们传参的字符数组
pi是我们字符数组的下标,为什么需要下标的地址呢,因为形参的改变不会影响实参
BTNode* BinaryTreeCreate(BTDataType* a, int* pi)
{
	if (a[*pi] == '#')
	{
		(*pi)++;

		return NULL;
	}

	BTNode* root = (BTNode*)malloc(sizeof(BTNode));
	if (root == NULL)
	{
		perror("malloc fail");
		return;
	}

	root->data = a[(*pi)++];

	root->left = BinaryTreeCreate(a, pi);
	root->right = BinaryTreeCreate(a, pi);

	return root;
}
  1. 做递归时截止条件是必不可少的,我们选择使用叶子节点是否为空作为判断标准。
  2. 我们将这个问题从创建一个完整二叉树分成先创建一个节点并连接他的左右节点的问题·
  3. 我们现在需要完成此时函数需要完成的任务,此次函数的目的是创造一个二叉树,我们需要对root->val进行赋值,再将root的左右子树进行连接
  4. 此时观察整个函数,我们发现我们已经生成了一个root节点,也进行了赋值,root的左右节点也都分别使用BinaryTreeCreate(a, n, pi)这个函数进行连接,我们已经把此函数当做可以完成既定任务的,不需要过多纠结,此时我们在加一个返回值root,就完成了此次函数的创建

二叉树的递归图:

在这里插入图片描述
大家也可以自己动手画一下递归展开图

二叉树的遍历:

前序遍历:

有了以上的思路就可以很简单的实现了

void BinaryTreePrevOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}

	printf("%c ", root->data);
	BinaryTreePrevOrder(root->left);
	BinaryTreePrevOrder(root->right);
}

代码也很简洁

  1. NULL结束条件
  2. 分治:前序是根左右的遍历,故我们先遍历根,在遍历左子树右子树
  3. 没有返回值,不需要return
就像下图这样,将这个程序当成可以完成任务的函数。
    printf("%c ", root->data);//进行本次的任务
	BinaryTreePrevOrder(root->left);//遍历左子树
	BinaryTreePrevOrder(root->right);//遍历左子树

中序遍历:

与前序遍历一致

void BinaryTreePrevOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}

	BinaryTreePrevOrder(root->left);
	printf("%c ", root->data);
	BinaryTreePrevOrder(root->right);
}

后序遍历:

void BinaryTreePrevOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}

	BinaryTreePrevOrder(root->left);
	BinaryTreePrevOrder(root->right);
	printf("%c ", root->data);
}

二叉树节点个数:

int BinaryTreeSize(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}

	return BinaryTreeSize(root->left) + 
	       BinaryTreeSize(root->right) + 1;
}
  1. 结束条件为NULL
  2. 分治:将这个问题当成当前节点+左子树节点与右子树节点
  3. return 当前节点+左子树节点与右子树节点

二叉树叶子结点个数:

int BinaryTreeLeafSize(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	if (root->left == NULL && root->right == NULL)
	{
		return 1;
	}

	return BinaryTreeLeafSize(root->left) + 
		   BinaryTreeLeafSize(root->right);
}
  1. 结束条件有两个(因为当前节点不为空节点才能是叶子节点),为空或为叶子节点
  2. 分治:将问题变为左子树的叶子节点与右子树的叶子结点
  3. 返回总结点个数

二叉树第k层节点个数:

int BinaryTreeLevelKSize(BTNode* root, int k)
{
	if (root == NULL)
	{
		return 0;
	}
	if (k == 1)
	{
		return 1;
	}

	return BinaryTreeLevelKSize(root->left, k - 1) + 
		   BinaryTreeLevelKSize(root->right, k - 1);
}

1.结束条件有两个,当为NULL或为目标层数时为结束
2. 分治:这个的分治并不像上边的简单了,我们需要root的第k层转化为root->左子树的k-1层与root->right的k-1层,将K也作为函数传参,每次减1
3. 返回第k层节点个数

二叉树查找值为x的节点:

我们先来看这样一段代码,相信有许多小伙伴在遇到

BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{
	if (root == NULL)
	{
		return NULL;
	}
	if (root->data == x)
	{
		return root;
	}

	BinaryTreeFind(root->left, x);
	BinaryTreeFind(root->right, x);
	return NULL;
}

乍一看好像没什么问题,不就是前序遍历嘛,
不然,实则我们并没有记录找到的地址,像下图一样
在这里插入图片描述

BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{
	if (root == NULL)
	{
		return NULL;
	}
	if (root->data == x)
	{
		return root;
	}

	BTNode* ret1 = BinaryTreeFind(root->left, x);
	if (ret1)
	{
		return ret1;
	}
	BTNode* ret2 = BinaryTreeFind(root->right, x);
	if (ret2)
	{
		return ret2;
	}

	return NULL;
}
  1. 结束为NULL目标值
  2. 分治:当前节点+左子树+右子树进行前序遍历
  3. 记录ret值并返回

二叉树的销毁:

使用后序遍历,因为前序与中序需要记录当前被销毁的左右节点地址

void BinaryTreeDestory(BTNode* root)
{
	if (root == NULL)
	{
		return;
	}
	BinaryTreeDestory(root->left);
	BinaryTreeDestory(root->right);
	free(root);
}

持续更新中…

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/292783.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

DevOps(6)

目录 26.如何在Linux下跨不同的虚拟桌面共享程序? 27.无名(空)目录代表什么? 29.什么是守护进程? 30.如何从一个桌面环境切换到另一个桌面环境,例如从KDE切换到Gnome? 26.如何在Linux下跨不同的虚拟桌面…

使用STM32和ESP8266构建智能家居网络

本文将介绍如何使用STM32微控制器和ESP8266 WiFi模块构建一个智能家居网络。我们将讨论智能家居网络的整体设计思路、硬件连接和软件开发。通过本文的指导和示例代码,读者将能够搭建一个智能家居系统,实现远程控制和数据监测。 一、智能家居网络的整体设…

16|连接数据库:通过链和代理查询鲜花信息

16|连接数据库:通过链和代理查询鲜花信息 新的数据库查询范式 下面这个图,非常清晰地解释了这个以 LLM 为驱动引擎,从自然语言的(模糊)询问,到自然语言的查询结果输出的流程。 这种范式结合了…

【愚公系列】2023年12月 HarmonyOS应用开发者高级认证(完美答案)

🏆 作者简介,愚公搬代码 🏆《头衔》:华为云特约编辑,华为云云享专家,华为开发者专家,华为产品云测专家,CSDN博客专家,CSDN商业化专家,阿里云专家博主&#xf…

【React系列】Redux(三) state如何管理

本文来自#React系列教程:https://mp.weixin.qq.com/mp/appmsgalbum?__bizMzg5MDAzNzkwNA&actiongetalbum&album_id1566025152667107329) 一. reducer拆分 1.1. reducer代码拆分 我们来看一下目前我们的reducer: function reducer(state ini…

【flink番外篇】9、Flink Table API 支持的操作示例(14)- 时态表的join(java版本)

Flink 系列文章 一、Flink 专栏 Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。 1、Flink 部署系列 本部分介绍Flink的部署、配置相关基础内容。 2、Flink基础系列 本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的…

Redis 哨兵主备切换的数据丢失问题

导致数据丢失的两种情况 主备切换的过程,可能会导致数据丢失: 异步复制导致的数据丢失 因为 master->slave 的复制是异步的,所以可能有部分数据还没复制到 slave , master 就宕机 了,此时这部分数据就丢失了…

VSCode远程开发配置和SSH免密登录

目录 概要远程开发插件安装开始连接SSH免密登录开发环境配置 概要 现在很多公司都是直接远程到服务器上写代码,使用远程开发,可以在与生产环境相同的环境中开发、测试和部署代码,减少因环境不同而导致的问题。本文将详细介绍如何通过VSCode连…

【MySQL】字符集与排序规则

在MySQL数据库中,字符集(Character Set)和排序规则(Collation,也称字符集校验规则)是重要的概念,它们对于正确存储和比较数据至关重要。 字符集与排序规则 字符集是一组字符的集合,与数字编码…

prometheus与zabbix监控的对比介绍

一、普米与zabbix基本介绍 1、prometheus介绍 Prometheus的基本原理是Prometheus Server通过HTTP周期性抓取被监控组件的监控数据,任意组件只要提供对应的HTTP接口并且符合Prometheus定义的数据格式,就可以接入Prometheus监控。 工作流程大致分为收集数…

java SSM水质历史数据可视化设计myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

一、源码特点 java SSM水质历史数据可视化设计是一套完善的web设计系统(系统采用SSM框架进行设计开发,springspringMVCmybatis),对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主…

2023-我的CSDN创作之旅

1.博客内容与数量 2023年共发表博客59篇,内容主要集中在GIS,空间分析等领域 主要内容有: networkx学习 Geospatial Data Science Geocomputation ESDA in PySal SHAP Spatial Data Analysis BikeDNA 以下是对这几个章节主要内容的简…

Docker无法启动Postgresql容器

目录 问题描述解决问题 问题描述 拉取了一个Postgresql14.2的镜像,在docker run创建并运行容器之后使用docker ps发现容器没有跑起来,再次使用docker start也没跑起来。 docker run -d --name mypg -v psql-data:/var/lib/postgresql/data -e POSTGRES…

【Bug】Android BottomNavigationView 图标黑色色块问题

最近在研究Android Jetpack组件,在使用Navigation配合底部导航栏时,发现一个奇怪的问题,如下: 说明:图标来源于Iconfont开源图标库 我的第三个图标变成了一个黑色色块,这个问题前两天我遇见过&#xff0c…

web服务器nginx和Apache有什么区别?

随着互联网的快速发展,Web服务器在互联网应用中扮演着越来越重要的角色。其中,Nginx和Apache是两种广泛使用的Web服务器软件。尽管它们都可以实现Web服务器的功能,但Nginx和Apache在许多方面存在一些重要的区别。本文将探讨Nginx和Apache之间…

学习Vue 03-03 为TypeScript使用defineComponent支持

03 为TypeScript使用defineComponent支持 The defineComponent() method is a wrapper function that accepts an object of configurations and returns the same thing with type inference for defining a component. defineComponent() 方法是一个封装函数,它…

win2003搭建DNS服务器域名解析方法

可以搭建DNS服务器的系统有很多,这里以win2003举例。 要在Windows 2003上搭建DNS服务器,需要按照以下步骤操作: 一 配置DNS服务器 1、打开“控制面板”,选择“添加/删除程序”,点击“添加/删除Windows组件”。 2、在“Windows组件向导”中…

【技能---500G硬盘-Ubuntu 20.04安装分区参考】

文章目录 Ubuntu 20.04安装分区指导安装分区流程Ubuntu 系统分区关键一步----- 选择安装启动引导器的设备 Ubuntu 20.04安装分区指导 安装Ubuntu 20.04的时候可以自己指定各个内存空间的占用,值得注意的是,这里的分区有一定的技巧!&#xff0…

深度学习 Day24——J3-1DenseNet算法实战与解析

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制🚀 文章来源:K同学的学习圈子 文章目录 前言1 我的环境2 pytorch实现DenseNet算法2.1 前期准备2.1.1 引入库2.1.2 设…

Spring MVC RequestMappingInfo路由条件匹配

前言 我们已经知道,被RequestMapping标注的方法会被解析为 HandlerMethod,它也是 Spring MVC 中最常用的 Handler 类型。现在的问题是,HTTP 请求是如何路由到对应的 HandlerMethod?你可能脱口而出:根据请求的 Url 匹配…