【数据不完整?用EM算法填补缺失】期望值最大化 EM 算法:睹始知终

期望值最大化算法 EM:睹始知终

    • 算法思想
    • 算法推导
    • 算法流程
      • E步骤:期望
      • M步骤:最大化
      • 陷入局部最优的原因
    • 算法应用
      • 高斯混合模型(Gaussian Mixture Model, GMM)
        • 问题描述
        • 输入输出
        • Python代码实现

 


算法思想

期望值最大化方法,是宇宙演变、物种进化背后的动力。

如果一个公司在制定年终奖标准时,把每个员工一半的奖金和公司价值观挂钩,人们就会背诵创始人每个语录 — 整个公司都会自动迭代寻找最优解,每个人说话都是公司价值观。

如果一个国家足球不行,把每个孩子的高考分数和足球水平挂钩,人们就会大力投资足球设施,大爷大妈也会把广场让出去给孙子踢足球,谁跟我孙子抢我真的会发疯 — 整个国家都会自动迭代寻找最优解,每个人说话都是公司价值观。

这个思想在算法中就是期望最大化 EM 算法,只要给出一个收益函数, 计算机就会自动的寻找收益最大的那个点。

  • 在每一时刻,算出能够最大化收益(期望值)的方向,沿着这个方向走一小步
  • 然后再从新的起点重复这个过程,不论从何处起始,最后一定能够达到收益最大的那个终点

 

EM 算法本质是迭代策略,用于含有隐变量的统计模型中,交替计算期望步骤最大化步骤,来寻找参数的最优估计。

比如看故事书,但故事中有一些缺失的部分(这些就是隐变量)。

你的目标是填补这些缺失部分,使得整个故事变得连贯和合理。

EM 算法就像一个两步循环过程,帮助你逐渐完善这个故事:

  • 期望步骤 (E 步骤): 在这一步,你根据目前所知的信息,对故事中缺失的部分做出最佳猜测。就好比你根据故事的上下文来推测这些缺失部分可能的内容。

  • 最大化步骤 (M 步骤): 接下来,你根据这些猜测来重新讲述整个故事,并调整故事中其他已知部分的细节,使得整体故事更加合理。这个过程就像根据新的假设来优化故事的连贯性。(M步骤可以使用 MLE 或 MAP)。

这个循环反复进行:你根据当前的故事版本来改善你对缺失部分的猜测,然后再用这些新猜测来优化整个故事。

随着每次迭代,故事变得越来越连贯,直到最终达到一个点,你觉得再怎么调整也无法使故事更好了。

这时,你就找到了最合适的版本来填补缺失部分,你找到了模型参数的最优估计。

 
再如 市场营销策略

  • 公司在设计营销策略时,通常会试图理解消费者的隐藏需求和偏好(隐藏变量),并据此调整其产品或服务(参数)。

  • 通过市场反馈,公司不断调整其策略以最大化销售或品牌影响力,这类似于EM算法的期望步骤和最大化步骤的迭代过程。

算法推导

EM 算法论文:https://web.mit.edu/6.435/www/Dempster77.pdf

概率图模型再复杂都可以简化成俩个变量:观测变量x、隐变量z

比如你正在看一部电影:

  • 电影中你能直接看到的场景和角色对话等就像是“观测变量”,这些是你直接获得的信息,不需要猜测或推理。
  • 然而,电影也有许多你看不到的部分,比如角色的内心想法、未展示的背景故事,或者导演留下的悬念。这些就像是“隐变量”,你无法直接观察它们,但它们对整个故事的剧情发展(趋势就是人心所向)至关重要。

p ( x ∣ θ ) = ∏ i = 1 n p ( x i ∣ θ ) L ( θ ) = log ⁡ p ( x ∣ θ ) = ∑ i = 1 n log ⁡ p ( x i ∣ θ ) = ∑ i = 1 n log ⁡ ∑ z p ( x i , z i ∣ θ ) \begin{aligned} &p(\mathbf{x}|\theta) \begin{aligned}=\prod_{i=1}^np(x_i|\theta)\end{aligned} \\ &{ L ( \theta )} =\operatorname{log}p(\mathbf{x}|\theta) \\ &=\sum_{i=1}^n\log p(x_i|\theta) \\ &=\sum_{i=1}^n\log\sum_zp(x_i,z_i|\theta) \end{aligned} p(xθ)=i=1np(xiθ)L(θ)=logp(xθ)=i=1nlogp(xiθ)=i=1nlogzp(xi,ziθ)

那我们逐步拆解公式原意:

  1. 联合概率分布

    • 第一行公式表示,观测数据集 x 在给定参数 θ 的条件下的联合概率分布
    • 比如你有 3 张卡片,每张卡片上都有一个秘密数字,这个数字可以是 1、2、3 中的任何一个,我们现在要猜每张卡片上的数字是什么。每张卡片上数字的猜测都是独立的,不会影响其他卡片上的猜测。
    • 在数学中,这就是我们说的“联合概率分布”,即我们想知道,所有卡片上每一种可能的数字组合出现的整体概率是多少
    • 如所有卡片上都是1的概率是多少(111)、如所有卡片上是123的概率是多少(123)、(222)、(321)、…、(333) 所有可能的数字组合及其相应的概率。
  2. 对数似然函数

    • 第二行公式,为了不忘记我们的猜测,我们决定把每次猜的结果写在一个日记本上。因为数字可能很大,所以我们用一种特别的数学“捷径”来记日记,这种捷径就是对数。这样,即使我们猜的数字很大,日记本上的数字也不会太长,更容易计算。
    • 在数学中,写在日记本上的这种方法叫做“对数似然函数”,一个帮助我们处理大数字的数学工具。
  3. 对数似然的求和

    • 第三行公式,现在我们决定把日记本上所有的数字加起来,因为我们用了对数,所以加起来很容易。这就像是玩一个加法游戏,把所有的小数字加起来,得到一个总分。
  4. 边缘概率

    • 第四行公式,第1张是1、第2张是2,第 3 张卡片藏在盒子里(只有第 3 张未知),我们只知道盒子里可能藏着什么数字(1、2、3)。那先专注于部分已知信息,而忽略未知部分的具体细节,猜对所有看得见的卡片的概率是多少。
    • 就是计算 第1张是1、第2张是2 的概率,忽略第三张卡片可能的值。
    • 这就是数学中的“边缘概率” —— 它允许我们在部分信息未知的情况下,仍对已知部分进行概率计算。

在概率分布上,就是先猜一个 z 的分布(记为 q),使用 E、M 步骤,去逼近真实分布 L ( θ ) L(\theta) L(θ)

最后让猜的分布像爬楼梯一样,找到真实分布 L ( θ ) L(\theta) L(θ) 的最高点(最优解)。

用数学公式描述这个过程:

L ( θ ) = ∑ i = 1 n log ⁡ ∑ z p ( x i , z i ∣ θ ) = ∑ i = 1 n log ⁡ ∑ z ∞ q i ( z ) p ( x i , z i ∣ θ ) q i ( z ) ≥ ∑ i = 1 n ∑ z q i ( z ) log ⁡ p ( x i , z i ∣ θ ) q i ( z ) \begin{aligned} L(\theta)& \begin{aligned}=&\sum_{i=1}^n\log\sum_zp(x_i,z_i|\theta)\end{aligned} \\ &\begin{aligned}=&\sum_{i=1}^n\log\sum_z^\infty q_i(z)\frac{p(x_i,z_i|\theta)}{q_i(z)}\end{aligned} \\ &\geq\sum_{i=1}^n\sum_zq_i(z)\log\frac{p(x_i,z_i|\theta)}{q_i(z)} \\ \end{aligned} L(θ)=i=1nlogzp(xi,ziθ)=i=1nlogzqi(z)qi(z)p(xi,ziθ)i=1nzqi(z)logqi(z)p(xi,ziθ)

  1. 第一行 L ( θ ) = ∑ i = 1 n log ⁡ ∑ z p ( x i , z i ∣ θ ) L(\theta) = \sum_{i=1}^n \log \sum_z p(x_i, z_i|\theta) L(θ)=i=1nlogzp(xi,ziθ)

    • 比如你正在玩一个寻宝游戏,你有一张地图( θ \theta θ),地图上标记了很多可能藏宝的地方(这里的藏宝地方就是 x i x_i xi z i z_i zi)。
    • x i x_i xi 是你可以看到的地方,而 z i z_i zi 是地图上标记的,但实际上可能藏宝也可能没藏宝的秘密地方。这一行的意思是,你在尝试弄清楚,根据地图,每个地方藏宝的可能性有多大。
  2. 第二行 = ∑ i = 1 n log ⁡ ∑ z ∞ q i ( z ) p ( x i , z i ∣ θ ) q i ( z ) = \sum_{i=1}^n \log \sum_z^\infty q_i(z) \frac{p(x_i, z_i|\theta)}{q_i(z)} =i=1nlogzqi(z)qi(z)p(xi,ziθ)

    • 这一步就像你在用一种特别的放大镜 q i ( z ) q_i(z) qi(z) 来看地图( θ \theta θ)。
    • 这个放大镜可以告诉你,每个秘密地方真的藏宝的机会有多大。
    • 你用这个放大镜和地图一起,来计算每个地方可能藏宝的几率。
  3. 第三行 ≥ ∑ i = 1 n ∑ z q i ( z ) log ⁡ p ( x i , z i ∣ θ ) q i ( z ) \geq \sum_{i=1}^n \sum_z q_i(z) \log \frac{p(x_i, z_i|\theta)}{q_i(z)} i=1nzqi(z)logqi(z)p(xi,ziθ)

    • 最后,这一步就像你在记录你的发现。
    • 对于地图上的每一个地方,你都写下了:根据我的放大镜和地图,我认为这里藏宝的机会有多大。”
    • 这样,你就得到了一个完整的藏宝地图,上面标记了所有可能藏宝的地方和它们的可能性。

然后根据 Jeasen 不等式,得到公式的下界。

最终的公式是: J ( z , q ) J(z,q) J(z,q)

  • 不断的改变 z,就能不断搜索 θ \theta θ 最大值(概率分布图中的最高点)

于是,EM 算法可分为 E 步骤、M 步骤。

算法流程

E步骤:期望

E 步骤:猜的分布 q 不变,最大化 z。

在图中,q 沿着 x 轴上升,碰到真实分布z 就停止,开始 M 步骤。

M步骤:最大化

M 步骤:猜的分布 q 寻优,z 不变。

在图中,q 沿着 y 轴水平移动,碰不到真实分布z 就停止,开始 E 步骤。

陷入局部最优的原因

EM 算法可能会陷入局部最优。

  1. 非凸目标函数:EM算法通常用于优化非凸(non-convex)的目标函数。在非凸函数中,可能存在多个局部最优解,这意味着算法可能会在达到一个局部最优点后停止,而这个点不一定是全局最优的。

  2. 初始值依赖性:EM算法的结果往往依赖于初始参数的选择。如果初始参数选得不好,算法可能会被引导到一个局部最优解而不是全局最优解。

  3. 迭代方式:EM算法通过交替执行其两个步骤(E步和M步)来逐渐改进参数估计。这种迭代方式可能会导致算法“陷入”某个局部区域的最优解,特别是在目标函数有多个峰值的情况下。

  4. 模型复杂性和数据的局限性:在一些复杂模型或者数据不足的情况下,EM算法可能无法准确估计出全局最优参数,从而陷入局部最优。

解决这些问题的一种方法是通过多次运行算法,每次使用不同的初始参数,然后从中选择最好的结果。

此外,还可以使用全局优化技术,如模拟退火或遗传算法,来辅助找到更接近全局最优的解。

算法应用

高斯混合模型(Gaussian Mixture Model, GMM)

问题描述

假设我们有一组观测数据点,我们认为这些数据点是由两个不同的高斯分布生成的,但我们不知道每个数据点来自哪个高斯分布。

我们的目标是估计这两个高斯分布的参数(均值和方差)以及每个分布对应的混合系数。

输入输出
  • 输入:一组观测数据点。
  • 输出:两个高斯分布的参数(均值和方差)和混合系数。
Python代码实现
import numpy as np
from sklearn.mixture import GaussianMixture

# 模拟数据生成
np.random.seed(0)
data = np.concatenate([np.random.normal(0, 1, 300), np.random.normal(5, 1.5, 700)]).reshape(-1, 1)

# 应用EM算法
gmm = GaussianMixture(n_components=2, random_state=0)
gmm.fit(data)

# 输出结果
print(f'均值: {gmm.means_.ravel()}')
print(f'方差: {gmm.covariances_.ravel()}')
print(f'混合系数: {gmm.weights_.ravel()}')

这段代码首先生成了一些模拟数据,数据是由两个不同的高斯分布合成的。

然后使用sklearn库中的GaussianMixture模型来应用EM算法。最后,打印出两个高斯分布的均值、方差以及混合系数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/287899.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

手把手教你学会接口自动化框架的搭建-前言

在网上看过很多帖子,各种接口自动化的框架眼花缭乱,但是对于很多才做自动化的新手,那是一头雾水。 因此,我决定出一个系列,让你能够按照我的文档一步步把接口自动化都做起来,而不是网上这种一股脑的全部抛出,让你看的云里雾里的。 看完这些文档保证你能去任何一家公司,…

面对众多知识付费平台,如何做出明智的选择?

在当今的知识付费市场中,用户面临的选择越来越多,如何从众多知识付费平台中正确选择属于自己的平台呢?下面,我们将为您介绍明理信息科技知识付费平台相比同行的优势,帮助您做出明智的选择。 一、创新的技术架构&#…

Python Web框架FastAPI——一个比Flask和Tornada更高性能的API框架

目录 一、FastAPI框架概述 二、FastAPI与Flask和Tornado的性能对比 1、路由性能 2、请求处理性能 3、内存占用 三、FastAPI的优点与特色 四、代码示例 五、注意事项 六、结论 在当今的软件开发领域,快速、高效地构建API成为了许多项目的关键需求。为了满足…

DevEco Studio IP Convention for MAC

一、前置条件 1、已经Phone/Tablet和PC连接到同一WLAN网络。 2、已经获取Phone/Tablet的IP地址,可通过设置>关于手机/关于平板>状态信息>IP地址进行 查看 3、Phone/Tablet上的555…

Nginx多域名部署多站点

目录 1.修改配置文件nginx.conf 2. 修改hosts文件 1.修改配置文件nginx.conf 在配置文件的 server_name 处修改成自己需要的域名,然后保存退出 j 查看语法是否错误,然后重启nginx nginx -t # 查看语法是否正确 systemctl restart nginx # 重启nginx …

【Python机器学习】观察数据散点图矩阵

构建机器学习模型前,通常要检查数据,判断不用机器学习能不能轻松完成任务,或者需要的信息有没有包含在数据中。检查数据也是发现异常值和特殊值的好办法。 检查数据的最佳方法之一就是可视化,一种是绘制散点图,将一个…

CNN——LeNet

1.LeNet概述 LeNet是Yann LeCun于1988年提出的用于手写体数字识别的网络结构,它是最早发布的卷积神经网络之一,可以说LeNet是深度CNN网络的基石。 当时,LeNet取得了与支持向量机(support vector machines)性能相…

【前沿技术】超级稳定的视频卡通画方案

Git clone项目到本地 git clone gitgithub.com:Artiprocher/DiffSynth-Studio.git 基本原理 使用了stable diffusion稳定扩散模型和controlnet来控制图像生成的轮廓,animatediff控制视频帧与帧之间的连续性,最后使用RIFE技术平滑整个生成后的视频。 …

40道java集合面试题含答案(很全)

1. 什么是集合 集合就是一个放数据的容器,准确的说是放数据对象引用的容器集合类存放的都是对象的引用,而不是对象的本身集合类型主要有3种:set(集)、list(列表)和map(映射)。 2. 集合的特点 集合的特点主要有如下两…

使用Python做个可视化的“剪刀石头布”小游戏

目录 一、引言 二、环境准备与基础知识 三、游戏界面制作 四、游戏逻辑实现 五、代码示例 六、游戏测试与优化 七、扩展与改进 八、总结 一、引言 “剪刀石头布”是一种古老的手势游戏,它简单易懂,趣味性强,适合各个年龄段的人参与。…

虎克:开发小程序要多少钱一个,非专业开发如何做自己的小程序

小程序开发费用主要取决于小程序的功能复杂度和开发周期。一般来说,小程序开发费用可以分为两类:模板开发和定制开发。 模板开发:模板开发是指使用现成的模板进行开发,价格相对较低,一般在几千元左右。优点是价格便宜&…

你不知道的 CSS 之 包含块 ! 最细讲解,一听就懂!

你不知道的 CSS 之包含块 一说到 CSS 盒模型,这是很多小伙伴耳熟能详的知识,甚至有的小伙伴还能说出 border-box 和 content-box 这两种盒模型的区别。 但是一说到 CSS 包含块,有的小伙伴就懵圈了,什么是包含块?好像…

(切图笔记)layui表格单元格添加超链接 以及传参方法 亲测可用 附代码

layui在切图网日常的工作中常常用到,特别是它的layer弹窗,基本可以满足网站切图时候遇到的绝大多数弹窗的情况,参数比较丰富 灵活,是不可多得的网页插件之一,我见很多人说layui过时了,这是相比于vue正流行的…

具有不规则结果的常规 PyTorch 张量函数

一、说明 深度学习从业者应注意的常用 PyTorch 张量函数的例外情况。你是不是也和上面的人一样呢?如果是,那么本文可能会帮助您在使用 PyTorch 构建深度学习模型时发现一些常见错误。 我在下面提到了 5 个最常用的 PyTorch 函数及其小示例以及它们无法按…

阿里云服务器8080端口怎么打开?在安全组中设置

阿里云服务器8080端口开放在安全组中放行,Tomcat默认使用8080端口,8080端口也用于www代理服务,阿腾云atengyun.com以8080端口为例来详细说下阿里云服务器8080端口开启教程教程: 阿里云服务器8080端口开启教程 阿里云服务器8080端…

Codeforces Good Bye 2023 A~E

A.2023(思维) 题意: 有一个序列 A a 1 , a 2 , . . . , a n k A a_1, a_2, ..., a_{n k} Aa1​,a2​,...,ank​,且这个序列满足 ∏ i 1 n k a i 2023 \prod\limits_{i 1}^{n k}a_i 2023 i1∏nk​ai​2023,而这个序列中的 k k k个…

[Flutter]WindowsOS上运行遇到的问题总结

[Flutter]WindowsOS上运行遇到的问题总结 写在开头 Flutter项目已能在移动端完美使用后,想看看在桌面端等使用情况 基于Flutter3.0后已支持Windows/MacOS等桌面端,不过具体的系统,还需要看下官方文档解释。 这里抛出文档地址,可…

solidity显示以太坊美元价格

看过以太坊白皮书的都知道,以太坊比较比特币而言所提升的地方中,我认为最重要的一点就是能够访问外部的数据,这一点在赌博、金融领域应用会很广泛,但是区块链是一个确定的系统,包括里面的所有数值包括交易ID等都是确定…

教师行业的行业现状

teacher行业现状,近年来呈现出许多新的变化。作为一名从事教育行业多年的教师,深感这个行业的日新月异。今天,就让我来为大家揭秘一下,这个行业究竟有着怎样的现状吧! 需求持续增长随着不断发展,家长们对孩…

【计算机毕业设计】SSM实现的在线农产品商城

项目介绍 本项目分为前后台,且有普通用户与管理员两种角色。 用户角色包含以下功能: 用户登录,查看首页,按分类查看商品,查看新闻资讯,查看关于我们,查看商品详情,加入购物车,查看我的订单,提交订单,添加收获地址,支付订单等功能。 管理员角色包含以…