每日一题(LeetCode)----二叉树--二叉树的层平均值

每日一题(LeetCode)----二叉树–二叉树的层平均值

1.题目(637. 二叉树的层平均值)

  • 给定一个非空二叉树的根节点 root , 以数组的形式返回每一层节点的平均值。与实际答案相差 10-5 以内的答案可以被接受。

    示例 1:

    img

    输入:root = [3,9,20,null,null,15,7]
    输出:[3.00000,14.50000,11.00000]
    解释:第 0 层的平均值为 3,第 1 层的平均值为 14.5,第 2 层的平均值为 11 。
    因此返回 [3, 14.5, 11] 。
    

    示例 2:

    img

    输入:root = [3,9,20,15,7]
    输出:[3.00000,14.50000,11.00000]
    

    提示:

    • 树中节点数量在 [1, 104] 范围内
    • -231 <= Node.val <= 231 - 1

2.解题思路

思路一:层序遍历

1.使用一个队列 其中元素的类型为node类型的指针(这里的队列我们用的是c++中封装好的,其实是模板类,我们这里是通过模板类创建了一个对象)和一个结果数组,结果数组用来存最终的结果

2.定义一个变量来记录当前层元素的个数(每出列一个元素都更新),再定义一个变量用来记录当前层总和和另一个变量用来记录当前层元素总数(当当前层元素都遍历完时,进行更新)

3.初始时,我们将根节点放入到队列中去,当前层元素个数记为1(提示:每出队列一个元素,那么当前层元素的个数进行-1操作)

4.我们将队列中的首元素出列,并将其不为空的左孩子和右孩子入队,然后当前层总和加上当前节点的值,当前层元素个数-1,当当前层元素个数变为0时,我们将当前层总和除以当前层元素总数的值放入到我们的结果数组中,并获取下一层元素个数,下一层元素的总数重复这个操作,直到队列为空结束

5.返回结果数组

3.写出代码

思路一的代码

class Solution {
public:
    vector<double> averageOfLevels(TreeNode* root) {
        vector<double> res;
        if(root==nullptr){
            return res;
        }
        queue<TreeNode*> qe;
        int t=0;
        qe.push(root);
        t=1;
        int x=t;
        double num=0;
        while(!qe.empty()){
            TreeNode* temp=qe.front();
            num+=temp->val;
            qe.pop();
            if(temp!=nullptr&&temp->left!=nullptr){
                qe.push(temp->left);
            }
            if(temp!=nullptr&&temp->right!=nullptr){
                qe.push(temp->right);
            }
            t--;
            if(t==0){
                res.push_back(num/=x);
                num=0;
                t=qe.size();
                x=t;
            }

        }

        return res;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/286743.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Math】重要性采样 Importance sample推导【附带Python实现】

【Math】重要性采样 Importance sample推导【附带Python实现】 文章目录 【Math】重要性采样 Importance sample推导【附带Python实现】1. Why need importance sample?2. Derivation of Discrete Distribution3. Derivation of Continuous Distribution3. An Example 笔者在学…

k8s的声明式资源管理(yaml文件)

1、声明式管理的特点 &#xff08;1&#xff09;适合对资源的修改操作 &#xff08;2&#xff09;声明式管理依赖于yaml文件&#xff0c;所有的内容都在yaml文件当中 &#xff08;3&#xff09;编辑好的yaml文件&#xff0c;还是要依靠陈述式的命令发布到k8s集群当中 kubect…

基于PCA-WA(Principal Component Analysis-weight average)的图像融合方法 Matlab代码及示例

摘要&#xff1a; 高效地将多通道的图像数据压缩&#xff08;如高光谱、多光谱成像数据&#xff09;至较低的通道数&#xff0c;对提高深度学习&#xff08;DL&#xff09;模型的训练速度和预测至关重要。本文主要展示利用PCA降维结合weight-average的图像融合方法。文章主要参…

【Leetcode】466. 统计重复个数

文章目录 题目思路代码 题目 466. 统计重复个数 思路 题目要求找出一个最大整数 m&#xff0c;使得经过 n2 个字符串 s2 组成的字符串能够被经过 n1 个字符串 s1 组成的字符串完全包含的次数。使用动态规划来记录每个位置匹配的情况&#xff0c;并通过循环节的分析来计算最…

leetcode刷题日记:222. Count Complete Tree Nodes(完全二叉树的节点个数)

这一道题&#xff0c;我们可以选择直接进行二叉树的遍历&#xff0c;将所有结点遍历一遍就能得到完全二叉树的结点个数&#xff0c;时间复杂度为O(n)。 代码如下&#xff1a; int countNodes(struct TreeNode* root) {if(rootNULL){return 0;}return countNodes(root->left…

(NeRF学习)NeRFStudio安装win11

参考&#xff1a; 【深度学习】【三维重建】windows11环境配置tiny-cuda-nn详细教程nerfstudio介绍及在windows上的配置、使用NeRFStudio官网githubRuntimeError: PytorchStreamReader failed reading zip archive: failed finding central directory原因及解决 目录 requireme…

element-ui table-自定义表格某列的表头样式或者功能

自带表格 自定义表格某列的表头样式或者功能 <el-table><el-table-column :prop"date">//自定义表身每行数据<template slot-scope"scope">{{scope.row[scope.column.label] - ? - : scope.row[scope.column.label]}}</template>…

使用Gitea搭建自己的git远程仓库

Gitea 为什么需要自建仓库 原因只有一个&#xff1a;折腾。其实国内的码云加上github已经足够用了。 官方原话 Gitea 的首要目标是创建一个极易安装&#xff0c;运行非常快速&#xff0c;安装和使用体验良好的自建 Git 服务。我们采用 Go 作为后端语言&#xff0c;这使我们…

计算机毕业设计 SpringBoot的乡村养老服务管理系统 Javaweb项目 Java实战项目 前后端分离 文档报告 代码讲解 安装调试

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…

是否需要跟上鸿蒙(OpenHarmony)开发岗位热潮?

前言 自打华为2019年发布鸿蒙操作系统以来&#xff0c;网上各种声音百家争鸣。尤其是2023年发布会公布的鸿蒙4.0宣称不再支持Android&#xff0c;更激烈的讨论随之而来。 本文没有宏大的叙事&#xff0c;只有基于现实的考量。 通过本文&#xff0c;你将了解到&#xff1a; Har…

使用Wireshark进行网络流量分析

目录 Wireshark是什么&#xff1f; 数据包筛选 筛选指定ip 使用逻辑运算符筛选 HTTP模式过滤 端口筛选 协议筛选 包长度筛选 数据包搜索 数据流分析 数据包导出 Wireshark是什么&#xff1f; 通过Wireshark&#xff0c;我们可以捕获和分析网络数据包&#xff0c;查看…

用ChatGPT方式编程!GitHub Copilot Chat全面开放使用

全球著名开源分享平台GitHub在官网宣布&#xff0c;经过几个月多轮测试的GitHub Copilot Chat&#xff0c;全面开放使用&#xff0c;一个用ChatGPT方式写代码的时代来啦&#xff01; 据悉&#xff0c;Copilot Chat是基于OpenAI的GPT-4模型&#xff0c;再结合其海量、优质的代码…

GitHub Copilot 最佳免费平替:阿里通义灵码

之前分享了不少关于 GitHub Copilot 的文章&#xff0c;不少粉丝都评论让我试试阿里的通义灵码&#xff0c;这让我对通义灵码有了不少的兴趣。 今天&#xff0c;阿七就带大家了解一下阿里的通义灵码&#xff0c;我们按照之前 GitHub Copilot 的顺序分享通义灵码在相同场景下的…

【Linux 内核源码分析】GPIO子系统软件框架

Linux内核的GPIO子系统是用于管理和控制通用输入输出&#xff08;GPIO&#xff09;引脚的软件框架。它提供了一套统一的接口和机制&#xff0c;使开发者能够方便地对GPIO进行配置、读写和中断处理。 主要组件&#xff1a; GPIO框架&#xff1a;提供了一套API和数据结构&#x…

【深度学习-基础学习】Self-Attention 自注意力机制 笔记

本篇文章学习总结 李宏毅 2021 Spring 课程中关于 Self-Attention 自注意力 机制相关的内容。课程链接以及PPT&#xff1a;李宏毅Spring2021ML 关于 Self-Attention 机制想要解决的问题 通常来说&#xff0c; 我们的模型的输入会是一个vector&#xff0c;然后输出可能是 一个数…

python图形界面设计工具,python的图形界面gui编程

大家好&#xff0c;小编为大家解答python编写图形化界面的工具的问题。很多人还不知道python图形界面设计工具&#xff0c;现在让我们一起来看看吧&#xff01; 1.根窗体 &#xff08;1&#xff09;创建根窗体对象 ①tkinter.Tk():创建一个根窗体对象。使用后会立即显示窗口&am…

基于 vite 创建 Vue3 项目

1、基于 vue-cli 创建 ## 查看vue/cli版本&#xff0c;确保vue/cli版本在4.5.0以上 vue --version## 安装或者升级你的vue/cli npm install -g vue/cli## 执行创建命令 vue create vue_test## 随后选择3.x ## Choose a version of Vue.js that you want to start the proje…

通过IP地址防范钓鱼网站诈骗的有效措施

随着互联网的普及&#xff0c;钓鱼网站诈骗成为一种广泛存在的网络犯罪行为。通过冒充合法网站&#xff0c;攻击者试图窃取用户的敏感信息。本文将探讨如何通过IP地址防范钓鱼网站诈骗&#xff0c;提供一系列有效的措施&#xff0c;以加强网络安全&#xff0c;保护用户免受诈骗…

审计报告翻译服务,如何确保翻译质量?

近年来&#xff0c;随着跨国经济活动的增多&#xff0c;越来越多的企业需要进行跨国审计&#xff0c;而审计报告的翻译就变得尤为重要。那么&#xff0c;审计报告翻译服务&#xff0c;如何确保翻译质量&#xff1f;  据了解&#xff0c;审计报告翻译是全面揭示被审计单位实质情…

【Jenkins】centos服务器部署jenkins2.426

Jenkins部署 版本选择说明 目前项目上用的版本是比较旧的&#xff0c;现在用不了&#xff0c;插件版本问题比较恶心。试过2.346&#xff0c;插件问题没解决&#xff0c; 单独找&#xff08;*.hpi&#xff09;插件匹配的版本太麻烦了。 前置环境部署 git 略 JDK11 该jenk…