YOLOv8改进 | 2023主干篇 | FasterNeT跑起来的主干网络( 提高FPS和检测效率)

一、本文介绍

本文给大家带来的改进机制是FasterNet网络,将其用来替换我们的特征提取网络,其旨在提高计算速度而不牺牲准确性,特别是在视觉任务中。它通过一种称为部分卷积(PConv)的新技术来减少冗余计算和内存访问。这种方法使得FasterNet在多种设备上运行速度比其他网络快得多,同时在各种视觉任务中保持高准确率。经过我的实验该主干网络确实能够涨点在大中小三种物体检测上,同时该主干网络也提供多种版本,大家可以在源代码中进行修改版本的使用。本文通过介绍其主要框架原理,然后教大家如何添加该网络结构到网络模型中。

推荐指数:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备    

训练结果对比图->  

二、FasterNet原理

 论文地址:官方论文地址

 代码地址:官方代码地址


2.1 FasterNet的基本原理

FasterNet是一种高效的神经网络架构,旨在提高计算速度而不牺牲准确性,特别是在视觉任务中。它通过一种称为部分卷积(PConv)的新技术来减少冗余计算和内存访问。这种方法使得FasterNet在多种设备上运行速度比其他网络快得多,同时在各种视觉任务中保持高准确率。例如,FasterNet在ImageNet-1k数据集上的表现超过了其他模型,如MobileViT-XXS,展现了其在速度和准确度方面的优势。

FasterNet的基本原理可以总结为以下几点:

1. 部分卷积(PConv): FasterNet引入了部分卷积(PConv),这是一种新型的卷积方法,它通过只处理输入通道的一部分来减少计算量和内存访问。

2. 加速神经网络: FasterNet利用PConv的优势,实现了在多种设备上比其他现有神经网络更快的运行速度,同时保持了较高的准确度。

下面为大家展示的是FasterNet的整体架构

它包括四个层次化的阶段,每个阶段由一系列FasterNet块组成,并由嵌入或合并层开头。最后三层用于特征分类。在每个FasterNet块中,PConv层之后是两个点状卷积(PWConv)层。为了保持特征多样性并实现更低的延迟,仅在中间层之后放置了归一化和激活层


2.2 部分卷积

部分卷积(PConv)是一种卷积神经网络中的操作,旨在提高计算效率。它通过只在输入特征图的一部分上执行卷积操作,而非传统卷积操作中的全面应用。这样,PConv可以减少不必要的计算和内存访问,因为它忽略了输入中认为是冗余的部分。这种方法特别适合在资源有限的设备上运行深度学习模型,因为它可以在不牺牲太多性能的情况下,显著降低计算需求。

下面我为大家展示了FasterNet中的部分卷积(PConv)与传统卷积和深度卷积/分组卷积的比较

PConv通过仅对输入通道的一小部分应用滤波器,同时保持其余通道不变,实现了快速和高效的特性提取。PConv的计算复杂度(FLOPs)低于常规卷积,但高于深度卷积/分组卷积,这样在减少计算资源的同时提高了运算性能。


2.3 加速神经网络

加速神经网络主要通过优化计算路径、减少模型大小和复杂性、提高操作效率,以及使用高效的硬件实现等方式来降低模型的推理时间。这些方法包括简化网络层使用更快的激活函数采用量化技术浮点运算转换为整数运算,以及使用特殊的算法来减少内存访问次数等。通过这些策略,可以在不损害模型准确性的前提下,使神经网络能够更快地处理数据和做出预测。


三、FasterNet的核心代码

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import torch
import torch.nn as nn
from timm.models.layers import DropPath, trunc_normal_
from functools import partial
from typing import List
from torch import Tensor
import copy
import os


class Partial_conv3(nn.Module):
    def __init__(self, dim, n_div, forward):
        super().__init__()
        self.dim_conv3 = dim // n_div
        self.dim_untouched = dim - self.dim_conv3
        self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)

        if forward == 'slicing':
            self.forward = self.forward_slicing
        elif forward == 'split_cat':
            self.forward = self.forward_split_cat
        else:
            raise NotImplementedError

    def forward_slicing(self, x: Tensor) -> Tensor:
        # only for inference
        x = x.clone()   # !!! Keep the original input intact for the residual connection later
        x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])

        return x

    def forward_split_cat(self, x: Tensor) -> Tensor:
        # for training/inference
        x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)
        x1 = self.partial_conv3(x1)
        x = torch.cat((x1, x2), 1)

        return x


class MLPBlock(nn.Module):

    def __init__(self,
                 dim,
                 n_div,
                 mlp_ratio,
                 drop_path,
                 layer_scale_init_value,
                 act_layer,
                 norm_layer,
                 pconv_fw_type
                 ):

        super().__init__()
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.n_div = n_div

        mlp_hidden_dim = int(dim * mlp_ratio)

        mlp_layer: List[nn.Module] = [
            nn.Conv2d(dim, mlp_hidden_dim, 1, bias=False),
            norm_layer(mlp_hidden_dim),
            act_layer(),
            nn.Conv2d(mlp_hidden_dim, dim, 1, bias=False)
        ]

        self.mlp = nn.Sequential(*mlp_layer)

        self.spatial_mixing = Partial_conv3(
            dim,
            n_div,
            pconv_fw_type
        )

        if layer_scale_init_value > 0:
            self.layer_scale = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
            self.forward = self.forward_layer_scale
        else:
            self.forward = self.forward

    def forward(self, x: Tensor) -> Tensor:
        shortcut = x
        x = self.spatial_mixing(x)
        x = shortcut + self.drop_path(self.mlp(x))
        return x

    def forward_layer_scale(self, x: Tensor) -> Tensor:
        shortcut = x
        x = self.spatial_mixing(x)
        x = shortcut + self.drop_path(
            self.layer_scale.unsqueeze(-1).unsqueeze(-1) * self.mlp(x))
        return x


class BasicStage(nn.Module):

    def __init__(self,
                 dim,
                 depth,
                 n_div,
                 mlp_ratio,
                 drop_path,
                 layer_scale_init_value,
                 norm_layer,
                 act_layer,
                 pconv_fw_type
                 ):

        super().__init__()

        blocks_list = [
            MLPBlock(
                dim=dim,
                n_div=n_div,
                mlp_ratio=mlp_ratio,
                drop_path=drop_path[i],
                layer_scale_init_value=layer_scale_init_value,
                norm_layer=norm_layer,
                act_layer=act_layer,
                pconv_fw_type=pconv_fw_type
            )
            for i in range(depth)
        ]

        self.blocks = nn.Sequential(*blocks_list)

    def forward(self, x: Tensor) -> Tensor:
        x = self.blocks(x)
        return x


class PatchEmbed(nn.Module):

    def __init__(self, patch_size, patch_stride, in_chans, embed_dim, norm_layer):
        super().__init__()
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_stride, bias=False)
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = nn.Identity()

    def forward(self, x: Tensor) -> Tensor:
        x = self.norm(self.proj(x))
        return x


class PatchMerging(nn.Module):

    def __init__(self, patch_size2, patch_stride2, dim, norm_layer):
        super().__init__()
        self.reduction = nn.Conv2d(dim, 2 * dim, kernel_size=patch_size2, stride=patch_stride2, bias=False)
        if norm_layer is not None:
            self.norm = norm_layer(2 * dim)
        else:
            self.norm = nn.Identity()

    def forward(self, x: Tensor) -> Tensor:
        x = self.norm(self.reduction(x))
        return x


class FasterNet(nn.Module):

    def __init__(self,
                 in_chans=3,
                 num_classes=1000,
                 embed_dim=96,
                 depths=(1, 2, 8, 2),
                 mlp_ratio=2.,
                 n_div=4,
                 patch_size=4,
                 patch_stride=4,
                 patch_size2=2,  # for subsequent layers
                 patch_stride2=2,
                 patch_norm=True,
                 feature_dim=1280,
                 drop_path_rate=0.1,
                 layer_scale_init_value=0,
                 norm_layer='BN',
                 act_layer='RELU',
                 fork_feat=True,
                 init_cfg=None,
                 pretrained=None,
                 pconv_fw_type='split_cat',
                 **kwargs):
        super().__init__()

        if norm_layer == 'BN':
            norm_layer = nn.BatchNorm2d
        else:
            raise NotImplementedError

        if act_layer == 'GELU':
            act_layer = nn.GELU
        elif act_layer == 'RELU':
            act_layer = partial(nn.ReLU, inplace=True)
        else:
            raise NotImplementedError

        if not fork_feat:
            self.num_classes = num_classes
        self.num_stages = len(depths)
        self.embed_dim = embed_dim
        self.patch_norm = patch_norm
        self.num_features = int(embed_dim * 2 ** (self.num_stages - 1))
        self.mlp_ratio = mlp_ratio
        self.depths = depths

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            patch_size=patch_size,
            patch_stride=patch_stride,
            in_chans=in_chans,
            embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None
        )

        # stochastic depth decay rule
        dpr = [x.item()
               for x in torch.linspace(0, drop_path_rate, sum(depths))]

        # build layers
        stages_list = []
        for i_stage in range(self.num_stages):
            stage = BasicStage(dim=int(embed_dim * 2 ** i_stage),
                               n_div=n_div,
                               depth=depths[i_stage],
                               mlp_ratio=self.mlp_ratio,
                               drop_path=dpr[sum(depths[:i_stage]):sum(depths[:i_stage + 1])],
                               layer_scale_init_value=layer_scale_init_value,
                               norm_layer=norm_layer,
                               act_layer=act_layer,
                               pconv_fw_type=pconv_fw_type
                               )
            stages_list.append(stage)

            # patch merging layer
            if i_stage < self.num_stages - 1:
                stages_list.append(
                    PatchMerging(patch_size2=patch_size2,
                                 patch_stride2=patch_stride2,
                                 dim=int(embed_dim * 2 ** i_stage),
                                 norm_layer=norm_layer)
                )

        self.stages = nn.Sequential(*stages_list)

        self.fork_feat = fork_feat

        self.forward = self.forward_det
        # add a norm layer for each output
        self.out_indices = [0, 2, 4, 6]
        for i_emb, i_layer in enumerate(self.out_indices):
            if i_emb == 0 and os.environ.get('FORK_LAST3', None):
                raise NotImplementedError
            else:
                layer = norm_layer(int(embed_dim * 2 ** i_emb))
            layer_name = f'norm{i_layer}'
            self.add_module(layer_name, layer)

        self.apply(self.cls_init_weights)
        self.init_cfg = copy.deepcopy(init_cfg)
        if self.fork_feat and (self.init_cfg is not None or pretrained is not None):
            self.init_weights()
        self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
    def cls_init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, (nn.Conv1d, nn.Conv2d)):
            trunc_normal_(m.weight, std=.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, (nn.LayerNorm, nn.GroupNorm)):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)



    def forward_det(self, x: Tensor) -> Tensor:
        # output the features of four stages for dense prediction
        x = self.patch_embed(x)
        outs = []
        for idx, stage in enumerate(self.stages):
            x = stage(x)
            if self.fork_feat and idx in self.out_indices:
                norm_layer = getattr(self, f'norm{idx}')
                x_out = norm_layer(x)
                outs.append(x_out)
        return outs


if __name__ == "__main__":

    # Generating Sample image
    image_size = (1, 3, 640, 640)
    image = torch.rand(*image_size)

    # Model
    model = FasterNet()

    out = model(image)
    print(len(out))

四、手把手教你添加FasterNet机制

这个主干的网络结构添加起来算是所有的改进机制里最麻烦的了,因为有一些网略结构可以用yaml文件搭建出来,有一些网络结构其中的一些细节根本没有办法用yaml文件去搭建,用yaml文件去搭建会损失一些细节部分(而且一个网络结构设计很多细节的结构修改方式都不一样,一个一个去修改大家难免会出错),所以这里让网络直接返回整个网络,然后修改部分 yolo代码以后就都以这种形式添加了,以后我提出的网络模型基本上都会通过这种方式修改,我也会进行一些模型细节改进。创新出新的网络结构大家直接拿来用就可以的。下面开始添加教程->

(同时每一个后面都有代码,大家拿来复制粘贴替换即可,但是要看好了不要复制粘贴替换多了)


修改一

我们复制网络结构代码到“ultralytics/nn/modules”目录下创建一个py文件复制粘贴进去 ,我这里起的名字是FasterNet。


修改二

找到如下的文件"ultralytics/nn/tasks.py" 在开始的部分导入我们的模型如下图。

from .modules.FasterNet import FasterNet


修改三 

添加如下两行代码!!!


修改四

找到七百多行大概把具体看图片,按照图片来修改就行,添加红框内的部分,注意没有()只是函数名,我这里只添加了部分的版本,大家有兴趣这个FasterNet还有更多的版本可以添加,这个需要按照官方的代码里面根据参数改配置就行了,后期我提供的文件里面会集成所有的版本。

        elif m in {自行添加对应的模型即可,下面都是一样的}:
            m = m()
            c2 = m.width_list  # 返回通道列表
            backbone = True


修改五 

下面的两个红框内都是需要改动的。 

        if isinstance(c2, list):
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type


        m.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i + 4 if backbone else i, f, t  # attach index, 'from' index, type


修改六 

如下的也需要修改,全部按照我的来。

代码如下把原先的代码替换了即可。 

        if verbose:
            LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print

        save.extend(x % (i + 4 if backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list):
            ch.extend(c2)
            if len(c2) != 5:
                ch.insert(0, 0)
        else:
            ch.append(c2)


修改七

修改七和前面的都不太一样,需要修改前向传播中的一个部分, 已经离开了parse_model方法了。

可以在图片中开代码行数,没有离开task.py文件都是同一个文件。 同时这个部分有好几个前向传播都很相似,大家不要看错了,是70多行左右的!!!,同时我后面提供了代码,大家直接复制粘贴即可,有时间我针对这里会出一个视频。

代码如下->

    def _predict_once(self, x, profile=False, visualize=False):
        """
        Perform a forward pass through the network.

        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.

        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                if len(x) != 5: # 0 - 5
                    x.insert(0, None)
                for index, i in enumerate(x):
                    if index in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                x = x[-1] # 最后一个输出传给下一层
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x

到这里就完成了修改部分,但是这里面细节很多,大家千万要注意不要替换多余的代码,导致报错,也不要拉下任何一部,都会导致运行失败,而且报错很难排查!!!很难排查!!! 


修改八

我们找到如下文件'ultralytics/utils/torch_utils.py'按照如下的图片进行修改,否则容易打印不出来计算量。

五、FasterNet的yaml文件

复制如下yaml文件进行运行!!! 

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOP

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, FasterNet, []]  # 4
  - [-1, 1, SPPF, [1024, 5]]  # 5

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6
  - [[-1, 3], 1, Concat, [1]]  # 7 cat backbone P4
  - [-1, 3, C2f, [512]]  # 8

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9
  - [[-1, 2], 1, Concat, [1]]  # 10 cat backbone P3
  - [-1, 3, C2f, [256]]  # 11 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]] # 12
  - [[-1, 8], 1, Concat, [1]]  # 13 cat head P4
  - [-1, 3, C2f, [512]]  # 14 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]] # 15
  - [[-1, 5], 1, Concat, [1]]  # 16 cat head P5
  - [-1, 3, C2f, [1024]]  # 17 (P5/32-large)

  - [[11, 14, 17], 1, Detect, [nc]]  # Detect(P3, P4, P5)


六、成功运行记录 

下面是成功运行的截图,已经完成了有1个epochs的训练,图片太大截不全第2个epochs了。 


七、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/285269.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

系统学习Python——装饰器:函数装饰器-[对方法进行装饰:使用嵌套函数装饰方法]

分类目录&#xff1a;《系统学习Python》总目录 如果想要函数装饰器在简单函数和类级别的方法上都能工作&#xff0c;最直接的解决办法在于使用前面文章介绍的状态保持方案之一&#xff1a;把自己的函数装饰器编写为嵌套的def&#xff0c;这样你就不会陷入单一的self实例参数既…

听GPT 讲Rust源代码--library/portable-simd

File: rust/library/portable-simd/crates/core_simd/examples/spectral_norm.rs spectral_norm.rs是一个示例程序&#xff0c;它展示了如何使用Portable SIMD库中的SIMD&#xff08;Single Instruction Multiple Data&#xff09;功能来实现频谱规范化算法。该示例程序是Rust源…

仿网易云音乐网站PHP源码,可运营的原创音乐分享平台源码,在线音乐库系统

源码介绍 使用PHP和MYSQL开发的原创音乐分享平台源码&#xff0c;仿网易云音乐网站。用户可以在网站上注册并上传自己的音乐作品&#xff0c;系统内置广告系统&#xff0c;为网站创造收入来源。 安装教程 1.导入sql.sql 2.修改 includes\config.php 数据库信息和网址都改成…

3、事务与持久化

目录 1、事务 2、持久化 1. RDB 2.AOF 3.Redis的主从架构 4、哨兵 5、Redis的集群 1、事务 Redis事务&#xff1a;一次失误操作&#xff0c;该成功的成功&#xff0c;该失败的失败。 先开启事务&#xff0c;执行一些列的命令&#xff0c;但是命令不会立即执行&#xf…

第9章 继承和派生习题(详解)

一、选择题 1&#xff0e;下列表示引用的方法中&#xff0c; &#xff08;&#xff09; 是正确的。已知&#xff1a;int m10&#xff1a; A&#xff0e;int &xm&#xff1b; B&#xff0e;int &y10&#xff1b; C&#xff0e;int &z&#xff1b; D&#xff0e;fl…

双指针——移动零

题目 示例 算法原理 我们使用两个指针&#xff0c;cur扫描数组&#xff0c;如果nums[cur]为非0&#xff0c;dest&#xff0c;然后让nums[cur]与nums[dest]交换&#xff0c;从而实区间[0,dest]为非0,[dest1,cur]为0&#xff0c;[cur,numsSize-1]为未扫描 题目链接&#xff1a;28…

1.1 理解大数据(2)

小肥柴的Hadoop之旅 1.1 理解大数据&#xff08;2&#xff09; 目录1.1 理解大数据1.1.3 大数据概述1.1.4 更多思考 参考文献和资料 目录 1.1 理解大数据 1.1.3 大数据概述 step_0 大数据定义 【《大数据算法设计分析》】&#xff1a; 通常来讲大数据&#xff08;Big Data&am…

pyqt5用qtdesign设计页面时,去掉页面的空白界面、边框和标题栏

前言 Windows默认的标题栏有时候自己觉得不太美观&#xff0c;就想自己设计一个&#xff0c;然后把默认的去掉&#xff0c;并且把长方形的边框和多余的空表界面去掉&#xff0c;就是下图中圈出来的区域&#xff1a; 去掉之后的效果如图&#xff1a; 这样我们就可以自定义窗…

Spring Boot 3 集成 Jasypt详解

随着信息安全的日益受到重视&#xff0c;加密敏感数据在应用程序中变得越来越重要。Jasypt&#xff08;Java Simplified Encryption&#xff09;作为一个简化Java应用程序中数据加密的工具&#xff0c;为开发者提供了一种便捷而灵活的加密解决方案。本文将深入解析Jasypt的工作…

57.网游逆向分析与插件开发-游戏增加自动化助手接口-接管游戏的自动药水设定功能

内容来源于&#xff1a;易道云信息技术研究院VIP课 码云地址&#xff08;master分支&#xff09;&#xff1a;https://gitee.com/dye_your_fingers/sro_-ex.git 码云版本号&#xff1a;51307d6bf69f2f3c645c70d09f841f5e32da79b9 代码下载地址&#xff0c;在 SRO_EX 目录下&…

MySQL 8.0 InnoDB Tablespaces之Undo Tablespaces(UNDO表空间)

文章目录 MySQL 8.0 InnoDB Tablespaces之Undo Tablespaces&#xff08;UNDO表空间&#xff09;Undo Tablespaces&#xff08;UNDO表空间&#xff09;默认UNDO表空间添加 Undo 表空间查看Undo 相关的信息查看Undo 相关参数变量查看Undo 状态信息通过information_schema.innodb_…

Java ArrayList在遍历时删除元素

文章目录 1. Arrays.asList()获取到的ArrayList只能遍历&#xff0c;不能增加或删除元素2. java.util.ArrayList.SubList有实现add()、remove()方法3. 遍历集合时对元素重新赋值、对元素中的属性赋值、删除元素、新增元素3.1 普通for循环3.2 增强for循环3.3 forEach循环3.4 str…

JavaScript编程进阶 – 迭代器

JavaScript编程进阶 – 迭代器 JavaScript Programming Advanced - Iterators By JacksonML 在JavaScript语言中&#xff0c;迭代器是对象(Object), 它事先定义好了一个序列&#xff0c;并在其终止时有可能地&#xff08;潜在地&#xff09;返回值。 本文简要介绍迭代器对象如…

初识HTTP协议

Web服务器可以接收浏览器的请求&#xff0c;并将服务器中的web项目资源响应给浏览器&#xff0c;浏览器与服务器之间进行网络通信遵循HTTP协议。 一、什么是HTTP协议 超文本传输协议&#xff08;HTTP&#xff0c;HyperText Transfer Protocol&#xff09;(浏览器---->web服务…

2024新版塔罗占卜网站源码风水起名附带搭建视频及文本教程

附带文本教学及视频教程安装方法以linux为例&#xff1a; 1、建议在服务器上面安装宝塔面板&#xff0c;以便操作&#xff0c;高逼格技术员可以忽略这步操作。 2、把安装包文件解压到根目录&#xff0c;同时建立数据库&#xff0c;把数据文件导入数据库 3、修改核心文件conf…

Linux下使用Wireshark抓包教程

在实际开发中&#xff0c;涉及网络传输的环节是非常多的。在这些过程中&#xff0c;我们经常有查看被传输的数据信息的需求&#xff0c;因此&#xff0c;抓包工具应运而生。Wireshark便是一款非常有名的抓包及分析软件&#xff0c;具有强大的协议解析能力。本文将介绍如何在Lin…

前端算法之二叉树

二叉树 二叉树用于解决什么问题 数据的组织与搜索&#xff1a;排序&#xff1a;表达式和计算&#xff1a;图形处理&#xff1a; 举例&#xff1a;二叉树的最近公共祖先 思路&#xff1a; 排序/排布方式 和 &#xff08;排序中&#xff09;当前树和节点的关系 举例2&#xff1a;…

二叉树的前序遍历 、二叉树的最大深度、平衡二叉树、二叉树遍历(leetcode)

目录 一、二叉树的前序遍历 方法一&#xff1a;全局变量记录节点个数 方法二&#xff1a;传址调用记录节点个数 二、二叉树的最大深度 三、平衡二叉树 四、二叉树遍历 一、二叉树的前序遍历 方法一&#xff1a;全局变量记录节点个数 计算树的节点数: 函数TreeSize用于递…

Zookeeper注册中心实战

Java学习手册面试指南&#xff1a;https://javaxiaobear.cn Spring Cloud Zookeeper通过自动配置和绑定到 Spring 环境和其他 Spring 编程模型习惯用法&#xff0c;为 Spring Boot 应用程序提供Apache Zookeeper集成。通过一些简单的注释&#xff0c;您可以快速启用和配置应用…

51单片机中TCON, IE, PCON等寄存器的剖析

在单片机中&#xff0c;如何快速通过名字记忆IQ寄存器中每一个控制位的作用呢&#xff1f; IE&#xff08;interrupt enable&#xff09;寄存器中&#xff0c;都是中断的使能位置。 其中的EA&#xff08;enable all&#xff09;是总使能位&#xff0c;ES(enable serial)是串口…