构建高效数据流转的 ETL 系统:数据库 + Serverless 函数计算的最佳实践

作者:柳下

概述

随着企业规模和数据量的增长,数据的价值越来越受到重视。数据的变化和更新变得更加频繁和复杂,因此及时捕获和处理这些变化变得至关重要。为了满足这一需求,数据库 CDC(Change Data Capture)技术应运而生。然而,从 ETL 架构的角度来看,CDC 仅满足了数据的提取(Extract)能力。

为了实现完整的 ETL 架构,并完成高效、实时的数据集成、处理和同步,阿里云 Serverless 函数计算(FC)与数据库 CDC 技术深度融合。助力企业构建完整的 ETL 架构,实现数据的提取、转换和加载。通过将 CDC 作为事件驱动的数据源,将数据变化作为事件触发 Serverless 函数的执行,可以实现实时的数据处理和同步,有助于提升业务决策和分析的准确性和效率。

架构介绍

下面将从 ETL 模型入手,逐步讲述 FC + CDC 如何适配符合 ETL 模型的业务。

ETL 模型

在大数据领域,承载数据流转、加工业务的系统架构都可抽象为 ETL 模型,它由三个主要步骤组成:提取(Extract)、转换(Transform)和加载(Load)。

  1. 提取:从数据源中提取数据。数据源可以是各种数据存储系统。如:数据库、文件系统、消息队列、API接口等。
  2. 转换:数据经过一系列的转换操作转换为目标系统可以接受的格式和结构。如:数据清洗、数据合并、数据富化等。
  3. 加载:将转换后的数据加载到目标服务中。目标服务可以是数据仓库、数据湖、BI 系统等。

此架构应用广泛,帮助企业管理和利用数据,实现数据驱动的决策和业务转型。

图片

CDC + ETL

CDC 和 Extract(E) 是数据处理的两个概念,前者目的是捕获数据库中的变化数据,后者目的是从数据源中提取特定的数据集合。但回归业务本身,两者均是从数据源获取业务所需的数据,因此 CDC 和 ETL 的结合也是必然结果。两者的结合可构建更完整高效的数据处理流程,实现实时增量数据抽取和处理。相比传统的定期批量抽取方式,CDC 可更及时地捕获数据变化,使目标系统中的数据更加实时和准确。

图片

阿里云 DTS + FC

在阿里云数据库产品体系中,数据传输服务 DTS(Data Transmission Service)扮演了 CDC 的角色,作为实时数据流传输服务,它能够捕获上游数据库的变更信息,并将这些变更推送给下游服务。当下游服务是函数计算时,可以利用函数计算的自定义代码能力,对数据进行自定义加工(T)和投递(L)。如下图所示,FC 和 DTS 的深度集成构建了完整的 ETL 体系,为业务系统的快速搭建提供了帮助。

图片

功能详解

针对上文提到的 DTS + FC 架构,下面将剖析内部细节,深入理解系统的运行方式。

DTS 架构

DTS 在数据采集和数据传输上提供了完备的能力,DTS 系统可抽象为如下三大模块:

  1. Poller:从上游丰富的数据库服务获取数据,具体如下:
    • 传输数据类型: 可传输存量数据或增量数据;
    • 数据获取方式: 针对存量数据,DTS Poller 以并发查询方式扫描全表,将扫描结果投递至下游;针对增量数据,DTS Poller 监听并读取上游数据库的增量日志文件,解析文件中的日志信息并投递至下游;
    • 增量数据源: 针对不同的上游数据库,DTS 会读取不同的增量日志文件。例如:当数据库为 MySQL 时读取 Binlog 文件,当数据库为 MongoDB 时读取 Oplog 文件。
  1. Format Plugin:将获取的数据统一格式化为 Canal Json 格式,格式的统一标准化便于数据解析逻辑复用于不同的数据源;
  2. Sinker:将格式化后的数据推送给下游 FC。

图片

FC 架构

FC 和 DTS 的深度集成保证了 FC 可以接收 DTS 采集的数据库数据,并根据用户自定义代码实现数据加工和数据投递功能,具体如下:

  1. 请求路由: FC 网关将 DTS 发送的事件路由到 FC 后端;
  2. 调度处理: FC 调度层自动扩容计算节点运行用户代码,处理上游传递的 DTS 事件;
  3. 代码执行: 用户的代码按预期运行,通常逻辑为加工处理 event 事件,并将处理后的结果以 SDK/API 等方式发送给外部服务。

图片

从上图可以看到,您仅需关注数据加工和投递的业务逻辑,并通过简单代码片段完成实现,FC 后端会自动伸缩计算节点执行代码,您无需关注系统的基础设施建设、资源运维、伸缩、监控、报警等一系列繁琐工作,极大提升开发效率。同时 FC 作为 Serverless 应用,支持按量付费,避免长期预留机器资源带来的资源低效问题。

应用场景

OLTP 到 OLAP 的数据传输

什么是 OLTP 和 OLAP?

  • OLTP: 指在线事务处理。通过以事务单位进行操作,并需要支持高并发写入和数据一致性。常见的服务如:关系型数据库( MySQL、PostgreSQL 等)、订单处理系统、客户关系管理系统等。
  • OLAP: 指在线分析处理。通常用于从大量的数据中提取、聚合和分析信息,满足数据分析和决策支持。OLAP 系统通常以查询为基础,可以进行复杂的数据查询和分析操作。常见的服务如:AnalyticDB、ClickHouse、Power BI 等。

从上面描述看,OLTP 和 OLAP 是两种不同的数据处理服务,用于满足不同的业务需求。OLTP 系统适用于处理实时的交易和业务操作,而 OLAP 系统适用于从大量数据中进行分析和决策支持。在实际应用中,OLAP 的数据来源就是不同的 OLTP 数据库,所以 OLAP 本身不产生数据,通过 ETL 从 OLTP 抽取数据到 OLAP 数据库即数据仓库中做整合清洗达到可分析的数据标准。而 DTS + FC 恰好可以连接两类服务,打通数据通路。

图片

CDC 事件驱动模型

什么是事件和事件驱动?

  • 事件: 在业务系统中,事件是指系统或业务中发生的重要、有意义的事情或状态变化。事件可以是内部触发的,也可以是外部输入的,通常与业务流程、数据更改、用户操作等相关。
  • 事件驱动: 事件驱动架构是一种系统设计范式,其中事件是系统中的核心组成部分。在这种架构中,系统的各个组件通过订阅和响应事件来进行通信协作,实现松耦合、可扩展的系统架构。

CDC 因用于捕获数据库中的数据变化,常被当做事件驱动后续流程的执行,常见的场景如下:

  • 订阅和发布系统:CDC 可作为订阅和发布系统的一部分,将数据库中的数据变化作为事件发布给相关的订阅者。这可以用于实现发布-订阅模式的事件驱动系统架构。
  • 数据校验:CDC 可将数据库中变化的数据推送给 FC。做定制化数据校验,校验数据的合理合规,这在金融、财务订单等系统非常重要。
  • 数据审计:CDC 可将数据库中变化的数据推送给 FC,经由 FC 持久化至任意三方服务,用于数据审计和数据可追溯需求。
  • 变更通知:当特定关键数据变动后,以任意方式发送特定通知,如:邮箱、钉钉、短信、电话等。

图片

总结&展望

CDC 和 Serverless 函数计算的结合,可以实现实时的数据处理和响应,同时减少对基础设施的依赖和管理。 在实际应用中,可将 CDC 作为事件驱动的数据源,将数据变化作为事件触发 Serverless 函数的执行。这样可以实现实时的数据处理和分发,同时利用 Serverless 函数计算的弹性扩展能力,根据实际负载动态分配计算资源。总而言之,DTS 和 Serverless 函数计算的集成为企业提供了更高效、灵活和可靠的数据处理解决方案。未来函数计算将探索更多的数据源(Oracle、PolarDB PostgreSQL、PolarDB MySQL 等),满足更多的业务需求。更多信息或需求请钉钉与我们联系,官方钉钉群号:11721331。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/283649.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2022年全球运维大会(GOPS上海站)-核心PPT资料下载

一、峰会简介 GOPS 主要面向运维行业的中高端技术人员,包括运维、开发、测试、架构师等群体。目的在于帮助IT技术从业者系统学习了解相关知识体系,让创新技术推动社会进步。您将会看到国内外知名企业的相关技术案例,也能与国内顶尖的技术专家…

【大数据面试知识点】Spark中的累加器

Spark累加器 累加器用来把Executor端变量信息聚合到Driver端,在driver程序中定义的变量,在Executor端的每个task都会得到这个变量的一份新的副本,每个task更新这些副本的值后,传回driver端进行merge。 累加器一般是放在行动算子…

解决相机库CameraView多滤镜拍照错乱的BUG (一) : 复现BUG

1. 前言 这段时间,在使用 natario1/CameraView 来实现带滤镜的预览、拍照、录像功能。 由于CameraView封装的比较到位,在项目前期,的确为我们节省了不少时间。 但随着项目持续深入,对于CameraView的使用进入深水区,逐…

lambda表达式和包装器

正文开始前给大家推荐个网站,前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 我们在使用库里的排序算法时如果排序的是自定义类型或者库里默认的排序不能满足我们则需求&…

【单片机项目实战】温度控制系统

本项目的主要作用是实现温度调控,通过设定一个预定的温度值,实现实时检测外界温度,当外界温度小于预定值时,电机正转,实现降温效果;当外界温度大于预定值时,电机反转,实现升温效果&a…

网络安全—PKI公钥基础设施

文章目录 前提知识散列函数非对称加密数字签名 PKI受信任的人RA注册CA颁发IKE数字签名认证(交换证书)密钥管理 前提知识 散列函数 散列也可以叫哈希函数,MD5、SHA-1、SHA-2、、(不管叫啥,都记得是同一个东西就行&…

分库分表之Mycat应用学习五

5 Mycat 离线扩缩容 当我们规划了数据分片,而数据已经超过了单个节点的存储上线,或者需要下线节 点的时候,就需要对数据重新分片。 5.1 Mycat 自带的工具 5.1.1 准备工作 1、mycat 所在环境安装 mysql 客户端程序。 2、mycat 的 lib 目录…

mac上使用Navicat Premium 在本地和生产环境中保持数据库同步

Navicat Premium 是一款功能强大的数据库管理和开发工具,支持多种数据库系统,如 MySQL、Oracle、SQL Server 等。作为程序员,我深知在开发过程中需要一款方便、高效的数据库管理工具来提升工作效率。而 Navicat Premium 正是这样一款不可多得…

Spring5注解驱动(六)

5. 自动装配 5.1. Autowired&Qualifier&Primary 在原来,我们就是使用Autowired的这个注解来进行自动装配; 现在有一个BookController 类 package com.hutu.controller;import com.hutu.service.BookService; import org.springframework.bea…

2023最新租号平台系统源码支持单独租用或合租使用

这是一款租号平台源码,采用常见的租号模式。目前网络上还很少见到此类类型的源码。 平台的主要功能如下: 支持单独租用或采用合租模式; 采用易支付通用接口进行支付; 添加邀请返利功能,以便站长更好地推广&#xf…

基于蚁狮算法优化的Elman神经网络数据预测 - 附代码

基于蚁狮算法优化的Elman神经网络数据预测 - 附代码 文章目录 基于蚁狮算法优化的Elman神经网络数据预测 - 附代码1.Elman 神经网络结构2.Elman 神经用络学习过程3.电力负荷预测概述3.1 模型建立 4.基于蚁狮优化的Elman网络5.测试结果6.参考文献7.Matlab代码 摘要:针…

逻辑卷学习后续----------缩容

一、缩容:缩减大小 ext4可以 , xfs无法缩减,缩减会影响业务 1.解挂载 2.检查文件系统完整性 3.缩减文件系统 4.缩减逻辑卷上下一致 5.再挂载回去 添加磁盘 文件系统只能装ext4 缩减文件系统 resize2fs 挂载失败需要重新安装文件系统…

磁盘阵列(RAID)

1.独立硬盘冗余阵列(RAID, Redundant Array of Independent Disks) 旧称廉价磁盘冗余阵列(Redundant Array of Inexpensive Disks),简称磁盘阵列 用虚拟化存储技术把多个硬盘组合起来,成为一个或多个硬盘阵…

[C#]使用ONNXRuntime部署一种用于边缘检测的轻量级密集卷积神经网络LDC

源码地址: github.com/xavysp/LDC LDC: Lightweight Dense CNN for Edge Detection算法介绍: 由于深度学习方法的快速发展,近年来,用于执行图像边缘检测的卷积神经网络(CNN)模型爆炸性地传播。但边缘检测…

Selenium教程04:鼠标+键盘网页的模拟操作

在webdriver 中,鼠标操作都封装在ActionChains类中,使用的时候需要导入这个包。 from selenium.webdriver import ActionChainsActionChains方法列表如下: click(on_elementNone) ——单击鼠标左键click_and_hold(on_elementNone) ——点击…

开始使用MEVN技术栈开发02 MongoDB介绍

开始使用MEVN技术栈开发02 MongoDB介绍 MongoDB介绍 As indicated by the ‘ M ’ in MEVN, we will use MongoDB as the backend database for our app. MongoDB is a NoSQL database. Before we talk about what is a NoSQL database, let ’ s first talk about relationa…

[每周一更]-(第48期):一名成熟Go开发需储备的知识点(问题篇)- 1

问题篇 1、Go语言基础知识 什么是Go语言?它有哪些特点?Go语言的数据类型有哪些?Goroutine是什么?它与线程的区别是什么?介绍一下Go语言的垃圾回收机制。 2、并发和并行 什么是并发和并行?它们之间的区别…

Java超高精度无线定位技术--UWB (超宽带)人员定位系统源码

UWB室内定位技术是一种全新的、与传统通信技术有极大差异的通信新技术。它不需要使用传统通信体制中的载波,而是通过发送和接收具有纳秒或纳秒级以下的极窄脉冲来传输数据,从而具有GHz量级的带宽。 UWB(超宽带)高精度定位系统是一…

Java方法(定义和调用,带参数方法定义和调用,带返回值方法的定义和调用,方法的注意事项,方法重载)

文章目录 1. 方法概述1.1 方法的概念 2. 方法的定义和调用2.1 无参数方法定义和调用2.3 无参数方法的练习 3. 带参数方法定义和调用3.1 带参数方法定义和调用3.2 形参和实参3.3 带参数方法练习 4. 带返回值方法的定义和调用4.1 带返回值方法定义和调用4.2 带返回值方法练习14.3…